Cargando…
Visualizing the lipid dynamics role in infrared neural stimulation using stimulated Raman scattering
Infrared neural stimulation (INS) uses pulsed infrared light to yield label-free neural stimulation with broad experimental and translational utility. Despite its robust demonstration, INS’s mechanistic and biophysical underpinnings have been the subject of debate for more than a decade. The role of...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Biophysical Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9072573/ https://www.ncbi.nlm.nih.gov/pubmed/35276133 http://dx.doi.org/10.1016/j.bpj.2022.03.006 |
_version_ | 1784701092947296256 |
---|---|
author | Adams, Wilson R. Gautam, Rekha Locke, Andrea Masson, Laura E. Borrachero-Conejo, Ana I. Dollinger, Bryan R. Throckmorton, Graham A. Duvall, Craig Jansen, E. Duco Mahadevan-Jansen, Anita |
author_facet | Adams, Wilson R. Gautam, Rekha Locke, Andrea Masson, Laura E. Borrachero-Conejo, Ana I. Dollinger, Bryan R. Throckmorton, Graham A. Duvall, Craig Jansen, E. Duco Mahadevan-Jansen, Anita |
author_sort | Adams, Wilson R. |
collection | PubMed |
description | Infrared neural stimulation (INS) uses pulsed infrared light to yield label-free neural stimulation with broad experimental and translational utility. Despite its robust demonstration, INS’s mechanistic and biophysical underpinnings have been the subject of debate for more than a decade. The role of lipid membrane thermodynamics appears to play an important role in how fast IR-mediated heating nonspecifically drives action potential generation. Direct observation of lipid membrane dynamics during INS remains to be shown in a live neural model system. We used hyperspectral stimulated Raman scattering microscopy to study biochemical signatures of high-speed vibrational dynamics underlying INS in a live neural cell culture model. The findings suggest that lipid bilayer structural changes occur during INS in vitro in NG108-15 neuroglioma cells. Lipid-specific signatures of cell stimulated Raman scattering spectra varied with stimulation energy and radiation exposure. The spectroscopic observations agree with high-speed ratiometric fluorescence imaging of a conventional lipophilic membrane structure reporter, 4-(2-(6-(dibutylamino)-2-naphthalenyl)ethenyl)-1-(3-sulfopropyl)pyridinium hydroxide. The findings support the hypothesis that INS causes changes in the lipid membrane of neural cells by changing the lipid membrane packing order. This work highlights the potential of hyperspectral stimulated Raman scattering as a method to safely study biophysical and biochemical dynamics in live cells. |
format | Online Article Text |
id | pubmed-9072573 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Biophysical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-90725732023-04-19 Visualizing the lipid dynamics role in infrared neural stimulation using stimulated Raman scattering Adams, Wilson R. Gautam, Rekha Locke, Andrea Masson, Laura E. Borrachero-Conejo, Ana I. Dollinger, Bryan R. Throckmorton, Graham A. Duvall, Craig Jansen, E. Duco Mahadevan-Jansen, Anita Biophys J Articles Infrared neural stimulation (INS) uses pulsed infrared light to yield label-free neural stimulation with broad experimental and translational utility. Despite its robust demonstration, INS’s mechanistic and biophysical underpinnings have been the subject of debate for more than a decade. The role of lipid membrane thermodynamics appears to play an important role in how fast IR-mediated heating nonspecifically drives action potential generation. Direct observation of lipid membrane dynamics during INS remains to be shown in a live neural model system. We used hyperspectral stimulated Raman scattering microscopy to study biochemical signatures of high-speed vibrational dynamics underlying INS in a live neural cell culture model. The findings suggest that lipid bilayer structural changes occur during INS in vitro in NG108-15 neuroglioma cells. Lipid-specific signatures of cell stimulated Raman scattering spectra varied with stimulation energy and radiation exposure. The spectroscopic observations agree with high-speed ratiometric fluorescence imaging of a conventional lipophilic membrane structure reporter, 4-(2-(6-(dibutylamino)-2-naphthalenyl)ethenyl)-1-(3-sulfopropyl)pyridinium hydroxide. The findings support the hypothesis that INS causes changes in the lipid membrane of neural cells by changing the lipid membrane packing order. This work highlights the potential of hyperspectral stimulated Raman scattering as a method to safely study biophysical and biochemical dynamics in live cells. The Biophysical Society 2022-04-19 2022-03-08 /pmc/articles/PMC9072573/ /pubmed/35276133 http://dx.doi.org/10.1016/j.bpj.2022.03.006 Text en © 2022 Biophysical Society. https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Articles Adams, Wilson R. Gautam, Rekha Locke, Andrea Masson, Laura E. Borrachero-Conejo, Ana I. Dollinger, Bryan R. Throckmorton, Graham A. Duvall, Craig Jansen, E. Duco Mahadevan-Jansen, Anita Visualizing the lipid dynamics role in infrared neural stimulation using stimulated Raman scattering |
title | Visualizing the lipid dynamics role in infrared neural stimulation using stimulated Raman scattering |
title_full | Visualizing the lipid dynamics role in infrared neural stimulation using stimulated Raman scattering |
title_fullStr | Visualizing the lipid dynamics role in infrared neural stimulation using stimulated Raman scattering |
title_full_unstemmed | Visualizing the lipid dynamics role in infrared neural stimulation using stimulated Raman scattering |
title_short | Visualizing the lipid dynamics role in infrared neural stimulation using stimulated Raman scattering |
title_sort | visualizing the lipid dynamics role in infrared neural stimulation using stimulated raman scattering |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9072573/ https://www.ncbi.nlm.nih.gov/pubmed/35276133 http://dx.doi.org/10.1016/j.bpj.2022.03.006 |
work_keys_str_mv | AT adamswilsonr visualizingthelipiddynamicsroleininfraredneuralstimulationusingstimulatedramanscattering AT gautamrekha visualizingthelipiddynamicsroleininfraredneuralstimulationusingstimulatedramanscattering AT lockeandrea visualizingthelipiddynamicsroleininfraredneuralstimulationusingstimulatedramanscattering AT massonlaurae visualizingthelipiddynamicsroleininfraredneuralstimulationusingstimulatedramanscattering AT borracheroconejoanai visualizingthelipiddynamicsroleininfraredneuralstimulationusingstimulatedramanscattering AT dollingerbryanr visualizingthelipiddynamicsroleininfraredneuralstimulationusingstimulatedramanscattering AT throckmortongrahama visualizingthelipiddynamicsroleininfraredneuralstimulationusingstimulatedramanscattering AT duvallcraig visualizingthelipiddynamicsroleininfraredneuralstimulationusingstimulatedramanscattering AT janseneduco visualizingthelipiddynamicsroleininfraredneuralstimulationusingstimulatedramanscattering AT mahadevanjansenanita visualizingthelipiddynamicsroleininfraredneuralstimulationusingstimulatedramanscattering |