Cargando…

Mending a broken heart with novel cardiogenic small molecules

Adult mammalian cardiomyocytes are unable to proliferate to regenerate lost tissue after heart injury. Du et al., reporting in Cell Stem Cell, employ a FUCCI- and MADM-based system to screen for small molecules combinations that produced a collaborative effect on cardiomyocyte cycling and cytokinesi...

Descripción completa

Detalles Bibliográficos
Autores principales: Powers, Nevan, Huang, Guo N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Nature Singapore 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9072610/
https://www.ncbi.nlm.nih.gov/pubmed/35511305
http://dx.doi.org/10.1186/s13619-022-00120-z
Descripción
Sumario:Adult mammalian cardiomyocytes are unable to proliferate to regenerate lost tissue after heart injury. Du et al., reporting in Cell Stem Cell, employ a FUCCI- and MADM-based system to screen for small molecules combinations that produced a collaborative effect on cardiomyocyte cycling and cytokinesis. The authors generate a cocktail of five small molecules that increase cardiomyocyte proliferation and regeneration in vitro and in vivo with high efficiency, and explore its potential in cardiac regenerative repair after myocardial infarction through a new potential pathway for cardiomyocyte cell-cycle re-entry.