Cargando…

Synthesis and reactivity of 2-thionoester pyrroles: a route to 2-formyl pyrroles

2-Functionalised pyrroles exhibit considerable synthetic utility. Herein, the synthesis and reactivity of 2-thionoester (–C(S)OR) pyrroles is reported. 2-Thionoester pyrroles were synthesised using a Knorr-type approach from aliphatic starting materials. 2-Thionoester pyrroles were reduced to the co...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Min Joon, Gaube, Sophie M., Beh, Michael H. R., Smith, Craig D., Thompson, Alison
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9072669/
https://www.ncbi.nlm.nih.gov/pubmed/35527977
http://dx.doi.org/10.1039/c9ra07527e
Descripción
Sumario:2-Functionalised pyrroles exhibit considerable synthetic utility. Herein, the synthesis and reactivity of 2-thionoester (–C(S)OR) pyrroles is reported. 2-Thionoester pyrroles were synthesised using a Knorr-type approach from aliphatic starting materials. 2-Thionoester pyrroles were reduced to the corresponding 2-formyl pyrroles, or the deuterated formyl variant, in one step using RANEY® nickel, thereby removing the need for the much-utilised hydrolysis/decarboxylation/formylation steps that are typically required to convert Knorr-type 2-carboxylate pyrroles into 2-formyl pyrroles. 2-Thionoester pyrroles proved tolerant of typical functional group interconversions for which the parent 2-carboxylate pyrroles have become known.