Cargando…
An iterative topic model filtering framework for short and noisy user-generated data: analyzing conspiracy theories on twitter
Conspiracy theories have seen a rise in popularity in recent years. Spreading quickly through social media, their disruptive effect can lead to a biased public view on policy decisions and events. We present a novel approach for LDA-pre-processing called Iterative Filtering to study such phenomena b...
Autores principales: | Kant, Gillian, Wiebelt, Levin, Weisser, Christoph, Kis-Katos, Krisztina, Luber, Mattias, Säfken, Benjamin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9072765/ https://www.ncbi.nlm.nih.gov/pubmed/35542313 http://dx.doi.org/10.1007/s41060-022-00321-4 |
Ejemplares similares
-
Pseudo-document simulation for comparing LDA, GSDMM and GPM topic models on short and sparse text using Twitter data
por: Weisser, Christoph, et al.
Publicado: (2022) -
The impact of co-national networks on asylum seekers’ employment: Quasi-experimental evidence from Germany
por: Stips, Felix, et al.
Publicado: (2020) -
Mapping ex ante risks of COVID‐19 in Indonesia using a Bayesian geostatistical model on airport network data
por: Seufert, Jacqueline D., et al.
Publicado: (2022) -
COVID-19 Conspiracy Theories Discussion on Twitter
por: Erokhin, Dmitry, et al.
Publicado: (2022) -
Maximum Likelihood-Based Iterated Divided Difference Filter for Nonlinear Systems from Discrete Noisy Measurements
por: Wang, Changyuan, et al.
Publicado: (2012)