Cargando…
Deep Learning-Based Universal Expert-Level Recognizing Pathological Images of Hepatocellular Carcinoma and Beyond
BACKGROUND AND AIMS: We aim to develop a diagnostic tool for pathological-image classification using transfer learning that can be applied to diverse tumor types. METHODS: Microscopic images of liver tissue with and without hepatocellular carcinoma (HCC) were used to train and validate the classific...
Autores principales: | Chen, Wei-Ming, Fu, Min, Zhang, Cheng-Ju, Xing, Qing-Qing, Zhou, Fei, Lin, Meng-Jie, Dong, Xuan, Huang, Jiaofeng, Lin, Su, Hong, Mei-Zhu, Zheng, Qi-Zhong, Pan, Jin-Shui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9072864/ https://www.ncbi.nlm.nih.gov/pubmed/35530044 http://dx.doi.org/10.3389/fmed.2022.853261 |
Ejemplares similares
-
Recognizing pathology of renal tumor from macroscopic cross-section image by deep learning
por: Lin, Zefang, et al.
Publicado: (2023) -
An Intelligence Method for Recognizing Multiple Defects in Rail
por: Deng, Fei, et al.
Publicado: (2021) -
Beyond Expert Opinion: A Comparison of Antibiotic Regimens for Infectious Urinary Tract Pathology in Pregnancy
por: Krischak, Madison K., et al.
Publicado: (2020) -
Different clinical features of children and adults in regional outbreak of Delta COVID-19
por: Hong, Mei-Zhu, et al.
Publicado: (2022) -
Liver chemistries in severe or non-severe cases of COVID-19: A systematic review and meta-analysis
por: Dong, Xuan, et al.
Publicado: (2022)