Cargando…

Utilizing spectral vegetation indices for yield assessment of tomato genotypes grown in arid conditions

Tomato is among important vegetable crops cultivated in different climates; however, heat stress can greatly affect fruit quality and overall yield. Crop reflectance measurements based on ground reflectance sensor data are reliable indicators of crop tolerance to abiotic stresses. Here, we report on...

Descripción completa

Detalles Bibliográficos
Autores principales: Aldubai, Abdulhakim A., Alsadon, Abdullah A., Al-Gaadi, Khalid A., Tola, ElKamil, Ibrahim, Abdullah A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9073031/
https://www.ncbi.nlm.nih.gov/pubmed/35531188
http://dx.doi.org/10.1016/j.sjbs.2021.12.030
Descripción
Sumario:Tomato is among important vegetable crops cultivated in different climates; however, heat stress can greatly affect fruit quality and overall yield. Crop reflectance measurements based on ground reflectance sensor data are reliable indicators of crop tolerance to abiotic stresses. Here, we report on using non-destructive spectral vegetation indices to monitor yield traits of 10 tomato genotypes transplanted on three different dates (Aug. 2, Sept. 3 and Oct. 1) during 2019 growing season in the Riyadh region. The ten genotypes comprised six commercial cultivars–(Pearson Improved, Strain B, Valentine, Marmande VF, Super Strain B, and Pearson early) ––and four local Saudi cultivars (Al-Ahsa, Al-Qatif, Hail and Najran). Spectral reflectance data were utilized using a FieldSpec 3 spectroradiometer in the range of 350–2500 nm to calculate nine vegetation indices (VIs): Normalized Water Band Index (NWBI), Difference Water Index (NDWI), Photochemical Reflectance Index (PRI), Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Red Edge Normalized Difference Vegetation Index, Soil Adjusted Vegetation Index (SAVI), Red Edge Normalized Difference Vegetation Index (RENDVI), Renormalized Difference Vegetation Index (RDVI), and Normalized Difference Nitrogen Index (NDNI). VIs and yield parameters (total fruit yield, harvest index) revealed that second transplanting date was optimal for all the genotypes. Valentine showed the best growth performance followed by Najran, Hail, Super Strain B and finally Pearson early. For all the three transplanting dates, Valentine recorded the highest total fruit yield. Additionally, some genotypes had no significant differences in the VIs values or the total fruit yield between the second and third transplanting dates. This study indicated that yield parameters could be linked to rapid, non-destructive hyperspectral reflectance data to predict tomato production under heat stress.