Cargando…

Confined toluene within InOF-1: CO(2) capture enhancement

The toluene adsorption properties of InOF-1 are studied along with the confinement of small amounts of this non-polar molecule revealing a 1.38-fold increase in CO(2) capture, from 5.26 wt% under anhydrous conditions to 7.28 wt% with a 1.5 wt% of pre-confined toluene at 298 K. The InOF-1 affinity to...

Descripción completa

Detalles Bibliográficos
Autores principales: Garrido-Olvera, L. Pamela, Sanchez-Bautista, Jonathan E., Alvarado-Alvarado, Daniel, Landeros-Rivera, Bruno, Álvarez, J. Raziel, Vargas, Rubicelia, González-Zamora, Eduardo, Balmaseda, Jorge, Lara-García, Hugo A., Martínez, Ana, Ibarra, Ilich A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9073166/
https://www.ncbi.nlm.nih.gov/pubmed/35529732
http://dx.doi.org/10.1039/c9ra05991a
Descripción
Sumario:The toluene adsorption properties of InOF-1 are studied along with the confinement of small amounts of this non-polar molecule revealing a 1.38-fold increase in CO(2) capture, from 5.26 wt% under anhydrous conditions to 7.28 wt% with a 1.5 wt% of pre-confined toluene at 298 K. The InOF-1 affinity towards toluene was experimentally quantified by ΔH(ads) (−46.81 kJ mol(−1)). InOF-1 is shown to be a promising material for CO(2) capture under industrial conditions. Computational calculations (DFT and QTAIM) and DRIFTs in situ experiments provided a possible explanation for the experimental CO(2) capture enhancement by showing how the toluene molecule is confined within InOF-1, which constructed a “bottleneck effect”.