Cargando…
Mechanochemistry-assisted hydrolysis of softwood over stable sulfonated carbon catalysts in a semi-batch process
The hydrolysis of lignocellulose is the first step in saccharide based bio-refining. The recovery of homogeneous acid catalysts imposes great challenges to the feasibility of conventional hydrolysis processes. Herein, we report a strategy to overcome these limitations by using stable sulfonated carb...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9073368/ https://www.ncbi.nlm.nih.gov/pubmed/35529150 http://dx.doi.org/10.1039/c9ra07668a |
_version_ | 1784701270314975232 |
---|---|
author | Scholz, David Xie, Jingwei Kröcher, Oliver Vogel, Frédéric |
author_facet | Scholz, David Xie, Jingwei Kröcher, Oliver Vogel, Frédéric |
author_sort | Scholz, David |
collection | PubMed |
description | The hydrolysis of lignocellulose is the first step in saccharide based bio-refining. The recovery of homogeneous acid catalysts imposes great challenges to the feasibility of conventional hydrolysis processes. Herein, we report a strategy to overcome these limitations by using stable sulfonated carbons as solid acid catalysts in a two-step process, composed of mechanocatalytic pretreatment and secondary hydrolysis in a semi-batch reactor. Without mechanocatalytic pre-treatment the hydrolysis of the insoluble substrate largely occurs through homogeneously catalyzed reactions. Ball-milling induced amorphization promotes a substantially higher substrate reactivity, because homogeneous hydrolysis occurs preferentially from less ordered structural domains in cellulose. In contrast, concerted ball-milling (CBM) of cellulose with the sulfonated carbon promotes a heterogeneously catalyzed hydrolysis to soluble oligosaccharides. By performing an in-depth physicochemical characterization of cellulose subjected to CBM treatment with different carbons, we reveal the crucial role of strong Brønsted acid sites in facilitating mechanocatalytic depolymerization. Recyclability experiments confirmed that despite being subject to profound structural changes during repeated pre-treatment/semi-batch hydrolysis cycles, the sulfonated carbon retained its catalytic activity. The combination of mechanocatalytic pretreatment with strong solid acids and hydrolysis in the semi-batch reactor was successfully extrapolated for the first time to the hydrolysis of real lignocellulose to achieve quantitative yields in C(5) and high yields in C(6) derived products. |
format | Online Article Text |
id | pubmed-9073368 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90733682022-05-06 Mechanochemistry-assisted hydrolysis of softwood over stable sulfonated carbon catalysts in a semi-batch process Scholz, David Xie, Jingwei Kröcher, Oliver Vogel, Frédéric RSC Adv Chemistry The hydrolysis of lignocellulose is the first step in saccharide based bio-refining. The recovery of homogeneous acid catalysts imposes great challenges to the feasibility of conventional hydrolysis processes. Herein, we report a strategy to overcome these limitations by using stable sulfonated carbons as solid acid catalysts in a two-step process, composed of mechanocatalytic pretreatment and secondary hydrolysis in a semi-batch reactor. Without mechanocatalytic pre-treatment the hydrolysis of the insoluble substrate largely occurs through homogeneously catalyzed reactions. Ball-milling induced amorphization promotes a substantially higher substrate reactivity, because homogeneous hydrolysis occurs preferentially from less ordered structural domains in cellulose. In contrast, concerted ball-milling (CBM) of cellulose with the sulfonated carbon promotes a heterogeneously catalyzed hydrolysis to soluble oligosaccharides. By performing an in-depth physicochemical characterization of cellulose subjected to CBM treatment with different carbons, we reveal the crucial role of strong Brønsted acid sites in facilitating mechanocatalytic depolymerization. Recyclability experiments confirmed that despite being subject to profound structural changes during repeated pre-treatment/semi-batch hydrolysis cycles, the sulfonated carbon retained its catalytic activity. The combination of mechanocatalytic pretreatment with strong solid acids and hydrolysis in the semi-batch reactor was successfully extrapolated for the first time to the hydrolysis of real lignocellulose to achieve quantitative yields in C(5) and high yields in C(6) derived products. The Royal Society of Chemistry 2019-10-18 /pmc/articles/PMC9073368/ /pubmed/35529150 http://dx.doi.org/10.1039/c9ra07668a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Scholz, David Xie, Jingwei Kröcher, Oliver Vogel, Frédéric Mechanochemistry-assisted hydrolysis of softwood over stable sulfonated carbon catalysts in a semi-batch process |
title | Mechanochemistry-assisted hydrolysis of softwood over stable sulfonated carbon catalysts in a semi-batch process |
title_full | Mechanochemistry-assisted hydrolysis of softwood over stable sulfonated carbon catalysts in a semi-batch process |
title_fullStr | Mechanochemistry-assisted hydrolysis of softwood over stable sulfonated carbon catalysts in a semi-batch process |
title_full_unstemmed | Mechanochemistry-assisted hydrolysis of softwood over stable sulfonated carbon catalysts in a semi-batch process |
title_short | Mechanochemistry-assisted hydrolysis of softwood over stable sulfonated carbon catalysts in a semi-batch process |
title_sort | mechanochemistry-assisted hydrolysis of softwood over stable sulfonated carbon catalysts in a semi-batch process |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9073368/ https://www.ncbi.nlm.nih.gov/pubmed/35529150 http://dx.doi.org/10.1039/c9ra07668a |
work_keys_str_mv | AT scholzdavid mechanochemistryassistedhydrolysisofsoftwoodoverstablesulfonatedcarboncatalystsinasemibatchprocess AT xiejingwei mechanochemistryassistedhydrolysisofsoftwoodoverstablesulfonatedcarboncatalystsinasemibatchprocess AT krocheroliver mechanochemistryassistedhydrolysisofsoftwoodoverstablesulfonatedcarboncatalystsinasemibatchprocess AT vogelfrederic mechanochemistryassistedhydrolysisofsoftwoodoverstablesulfonatedcarboncatalystsinasemibatchprocess |