Cargando…
Recognition of Immune Cell Markers of COVID-19 Severity with Machine Learning Methods
COVID-19 is hypothesized to be linked to the host's excessive inflammatory immunological response to SARS-CoV-2 infection, which is regarded to be a major factor in disease severity and mortality. Numerous immune cells play a key role in immune response regulation, and gene expression analysis...
Autores principales: | Chen, Lei, Mei, Zi, Guo, Wei, Ding, ShiJian, Huang, Tao, Cai, Yu-Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9073549/ https://www.ncbi.nlm.nih.gov/pubmed/35528178 http://dx.doi.org/10.1155/2022/6089242 |
Ejemplares similares
-
Identifying Methylation Signatures and Rules for COVID-19 With Machine Learning Methods
por: Li, Zhandong, et al.
Publicado: (2022) -
Identification of methylation signatures and rules for predicting the severity of SARS-CoV-2 infection with machine learning methods
por: Liu, Zhiyang, et al.
Publicado: (2022) -
Identification of Transcriptome Biomarkers for Severe COVID-19 with Machine Learning Methods
por: Li, Xiaohong, et al.
Publicado: (2022) -
Identifying Key MicroRNA Signatures for Neurodegenerative Diseases With Machine Learning Methods
por: Li, ZhanDong, et al.
Publicado: (2022) -
Detecting Blood Methylation Signatures in Response to Childhood Cancer Radiotherapy via Machine Learning Methods
por: Li, Zhandong, et al.
Publicado: (2022)