Cargando…
Multi-Label Classification in Patient-Doctor Dialogues With the RoBERTa-WWM-ext + CNN (Robustly Optimized Bidirectional Encoder Representations From Transformers Pretraining Approach With Whole Word Masking Extended Combining a Convolutional Neural Network) Model: Named Entity Study
BACKGROUND: With the prevalence of online consultation, many patient-doctor dialogues have accumulated, which, in an authentic language environment, are of significant value to the research and development of intelligent question answering and automated triage in recent natural language processing s...
Autores principales: | Sun, Yuanyuan, Gao, Dongping, Shen, Xifeng, Li, Meiting, Nan, Jiale, Zhang, Weining |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9073616/ https://www.ncbi.nlm.nih.gov/pubmed/35451969 http://dx.doi.org/10.2196/35606 |
Ejemplares similares
-
Research on Domain-Specific Knowledge Graph Based on the RoBERTa-wwm-ext Pretraining Model
por: Liu, Xingli, et al.
Publicado: (2022) -
A sui generis QA approach using RoBERTa for adverse drug event identification
por: Jain, Harshit, et al.
Publicado: (2021) -
RoBERTa-Assisted Outcome Prediction in Ovarian Cancer Cytoreductive Surgery Using Operative Notes
por: Laios, Alexandros, et al.
Publicado: (2023) -
First person – Roberta Besio
Publicado: (2019) -
First person – Roberta Azzarelli
Publicado: (2021)