Cargando…
A predictive study of metabolism reprogramming in cervical carcinoma
BACKGROUND: Metabolic reprogramming has been identified as a hallmark of cancer, influencing the immunity in the tumor microenvironment. Because of the high-heterogeneity of cervical carcinoma, we aim to figure out the metabolic subtypes of cervical carcinoma indicating the prognosis. METHODS: We pr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9073800/ https://www.ncbi.nlm.nih.gov/pubmed/35530966 http://dx.doi.org/10.21037/atm-22-981 |
_version_ | 1784701366903504896 |
---|---|
author | Dai, Guoyu Ou, Jie Wu, Bin |
author_facet | Dai, Guoyu Ou, Jie Wu, Bin |
author_sort | Dai, Guoyu |
collection | PubMed |
description | BACKGROUND: Metabolic reprogramming has been identified as a hallmark of cancer, influencing the immunity in the tumor microenvironment. Because of the high-heterogeneity of cervical carcinoma, we aim to figure out the metabolic subtypes of cervical carcinoma indicating the prognosis. METHODS: We profiled the distinct metabolic signatures using data from transcriptomes obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Bioinformatics analyses were conducted to identify the possible biomarkers of overall survival and chemotherapy resistance. RESULTS: Immune infiltration was closely related to metabolic pathways, especially in the carbohydrate pathway and the lipid and energy pathway. Two distinct clusters of differentially expressed genes were identified. Six genes were selected as possible indicators of prognosis, including ELK3, BIN2, MEI1, CCR7, CYP4F12, and DUOX1, relating to the immune status of tumor microenvironment. Under the risk score model based on metabolic genes, the high-risk group showed significantly lower survival (HR =6.802, with 95% CI: 3.637−12.721, P<0.0001), higher possibility of chemotherapy resistance, and higher infiltration of anti-tumor immune cells compared to the low-risk group. CONCLUSIONS: Metabolic reprogramming, especially in the carbohydrate pathway and the lipid and energy metabolic pathway, is associated with the immune cell microenvironment, which is crucial for the prognosis of Invasive cervical carcinoma (ICC), providing potential therapeutic targets in clinic. |
format | Online Article Text |
id | pubmed-9073800 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | AME Publishing Company |
record_format | MEDLINE/PubMed |
spelling | pubmed-90738002022-05-07 A predictive study of metabolism reprogramming in cervical carcinoma Dai, Guoyu Ou, Jie Wu, Bin Ann Transl Med Original Article BACKGROUND: Metabolic reprogramming has been identified as a hallmark of cancer, influencing the immunity in the tumor microenvironment. Because of the high-heterogeneity of cervical carcinoma, we aim to figure out the metabolic subtypes of cervical carcinoma indicating the prognosis. METHODS: We profiled the distinct metabolic signatures using data from transcriptomes obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Bioinformatics analyses were conducted to identify the possible biomarkers of overall survival and chemotherapy resistance. RESULTS: Immune infiltration was closely related to metabolic pathways, especially in the carbohydrate pathway and the lipid and energy pathway. Two distinct clusters of differentially expressed genes were identified. Six genes were selected as possible indicators of prognosis, including ELK3, BIN2, MEI1, CCR7, CYP4F12, and DUOX1, relating to the immune status of tumor microenvironment. Under the risk score model based on metabolic genes, the high-risk group showed significantly lower survival (HR =6.802, with 95% CI: 3.637−12.721, P<0.0001), higher possibility of chemotherapy resistance, and higher infiltration of anti-tumor immune cells compared to the low-risk group. CONCLUSIONS: Metabolic reprogramming, especially in the carbohydrate pathway and the lipid and energy metabolic pathway, is associated with the immune cell microenvironment, which is crucial for the prognosis of Invasive cervical carcinoma (ICC), providing potential therapeutic targets in clinic. AME Publishing Company 2022-04 /pmc/articles/PMC9073800/ /pubmed/35530966 http://dx.doi.org/10.21037/atm-22-981 Text en 2022 Annals of Translational Medicine. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Original Article Dai, Guoyu Ou, Jie Wu, Bin A predictive study of metabolism reprogramming in cervical carcinoma |
title | A predictive study of metabolism reprogramming in cervical carcinoma |
title_full | A predictive study of metabolism reprogramming in cervical carcinoma |
title_fullStr | A predictive study of metabolism reprogramming in cervical carcinoma |
title_full_unstemmed | A predictive study of metabolism reprogramming in cervical carcinoma |
title_short | A predictive study of metabolism reprogramming in cervical carcinoma |
title_sort | predictive study of metabolism reprogramming in cervical carcinoma |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9073800/ https://www.ncbi.nlm.nih.gov/pubmed/35530966 http://dx.doi.org/10.21037/atm-22-981 |
work_keys_str_mv | AT daiguoyu apredictivestudyofmetabolismreprogrammingincervicalcarcinoma AT oujie apredictivestudyofmetabolismreprogrammingincervicalcarcinoma AT wubin apredictivestudyofmetabolismreprogrammingincervicalcarcinoma AT daiguoyu predictivestudyofmetabolismreprogrammingincervicalcarcinoma AT oujie predictivestudyofmetabolismreprogrammingincervicalcarcinoma AT wubin predictivestudyofmetabolismreprogrammingincervicalcarcinoma |