Cargando…
Long non-coding RNA TFAP2A-AS1 plays an important role in oral squamous cell carcinoma: research includes bioinformatics analysis and experiments
BACKGROUND: Oral squamous cell carcinoma (OSCC) is the most common neck and head malignancies, and the prognosis is not good. Studies shown that the long non-coding RNA (lncRNA) TFAP2A-AS1 is involved in the progression of multiple cancers. However, the role of lncRNA TFAP2A-AS1 in OSCC remains uncl...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9074241/ https://www.ncbi.nlm.nih.gov/pubmed/35524329 http://dx.doi.org/10.1186/s12903-022-02203-4 |
Sumario: | BACKGROUND: Oral squamous cell carcinoma (OSCC) is the most common neck and head malignancies, and the prognosis is not good. Studies shown that the long non-coding RNA (lncRNA) TFAP2A-AS1 is involved in the progression of multiple cancers. However, the role of lncRNA TFAP2A-AS1 in OSCC remains unclear. We aimed to explore the functions and expression in OSCC. METHODS: The lncRNA profiles for OSCC patients were acquired from the TCGA. Based on these data, the data mining of TFAP2A-AS1 in patients with OSCC were performed. The functions of TFAP2A-AS1 were determined by bioinformatics analysis. The expression and roles in cell growth were tested by RT-qPCR and MTS assay. Cell invasion and migration were tested by wound healing and transwell assays. RESULTS: The consequences displayed that TFAP2A-AS1 was upregulated in the TCGA datasets. The expression of TFAP2A-AS1 was higher in OSCC samples. Bioinformatics analysis shown that TFAP2A-AS1 might be associated with the P53 signaling pathway. Cell culture experiments indicated that deficiency of TFAP2A-AS1 inhibited cell growth, invasion, and migration, and overexpression of it could opposite results in SCC-25 cells. CONCLUSION: The results suggested that TFAP2A-AS1 was overexpressed in OSCC cells, which could facilitate OSCC cell proliferation, migration, and invasion. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12903-022-02203-4. |
---|