Cargando…
RSNET: inferring gene regulatory networks by a redundancy silencing and network enhancement technique
BACKGROUND: Current gene regulatory network (GRN) inference methods are notorious for a great number of indirect interactions hidden in the predictions. Filtering out the indirect interactions from direct ones remains an important challenge in the reconstruction of GRNs. To address this issue, we de...
Autores principales: | Jiang, Xiaohan, Zhang, Xiujun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9074326/ https://www.ncbi.nlm.nih.gov/pubmed/35524190 http://dx.doi.org/10.1186/s12859-022-04696-w |
Ejemplares similares
-
The Network Zoo: a multilingual package for the inference and analysis of gene regulatory networks
por: Ben Guebila, Marouen, et al.
Publicado: (2023) -
NetBenchmark: a bioconductor package for reproducible benchmarks of gene regulatory network inference
por: Bellot, Pau, et al.
Publicado: (2015) -
SRGS: sparse partial least squares-based recursive gene selection for gene regulatory network inference
por: Guan, Jinting, et al.
Publicado: (2022) -
Inferring and analyzing gene regulatory networks from multi-factorial expression data: a complete and interactive suite
por: Cassan, Océane, et al.
Publicado: (2021) -
Metabolic network visualization eliminating node redundance and preserving metabolic pathways
por: Bourqui, Romain, et al.
Publicado: (2007)