Cargando…

Clickable poly-l-lysine for the formation of biorecognition surfaces

Biomolecules are immobilized onto surfaces employing the fast and stable adsorption of poly-l-lysine (PLL) polymers and the versatile copper-free click chemistry reactions. This method provides the combined advantages of versatile surface adsorption with density control using polyelectrolytes and of...

Descripción completa

Detalles Bibliográficos
Autores principales: Di Iorio, Daniele, Marti, Almudena, Koeman, Sander, Huskens, Jurriaan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9074408/
https://www.ncbi.nlm.nih.gov/pubmed/35528089
http://dx.doi.org/10.1039/c9ra08714a
_version_ 1784701474007154688
author Di Iorio, Daniele
Marti, Almudena
Koeman, Sander
Huskens, Jurriaan
author_facet Di Iorio, Daniele
Marti, Almudena
Koeman, Sander
Huskens, Jurriaan
author_sort Di Iorio, Daniele
collection PubMed
description Biomolecules are immobilized onto surfaces employing the fast and stable adsorption of poly-l-lysine (PLL) polymers and the versatile copper-free click chemistry reactions. This method provides the combined advantages of versatile surface adsorption with density control using polyelectrolytes and of the covalent and orthogonal immobilization of biomolecules with higher reaction rates and improved yields of click chemistry. Using DNA attachment as a proof of concept, control over the DNA probe density and applicability in electrochemical detection are presented.
format Online
Article
Text
id pubmed-9074408
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90744082022-05-06 Clickable poly-l-lysine for the formation of biorecognition surfaces Di Iorio, Daniele Marti, Almudena Koeman, Sander Huskens, Jurriaan RSC Adv Chemistry Biomolecules are immobilized onto surfaces employing the fast and stable adsorption of poly-l-lysine (PLL) polymers and the versatile copper-free click chemistry reactions. This method provides the combined advantages of versatile surface adsorption with density control using polyelectrolytes and of the covalent and orthogonal immobilization of biomolecules with higher reaction rates and improved yields of click chemistry. Using DNA attachment as a proof of concept, control over the DNA probe density and applicability in electrochemical detection are presented. The Royal Society of Chemistry 2019-11-04 /pmc/articles/PMC9074408/ /pubmed/35528089 http://dx.doi.org/10.1039/c9ra08714a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Di Iorio, Daniele
Marti, Almudena
Koeman, Sander
Huskens, Jurriaan
Clickable poly-l-lysine for the formation of biorecognition surfaces
title Clickable poly-l-lysine for the formation of biorecognition surfaces
title_full Clickable poly-l-lysine for the formation of biorecognition surfaces
title_fullStr Clickable poly-l-lysine for the formation of biorecognition surfaces
title_full_unstemmed Clickable poly-l-lysine for the formation of biorecognition surfaces
title_short Clickable poly-l-lysine for the formation of biorecognition surfaces
title_sort clickable poly-l-lysine for the formation of biorecognition surfaces
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9074408/
https://www.ncbi.nlm.nih.gov/pubmed/35528089
http://dx.doi.org/10.1039/c9ra08714a
work_keys_str_mv AT diioriodaniele clickablepolyllysinefortheformationofbiorecognitionsurfaces
AT martialmudena clickablepolyllysinefortheformationofbiorecognitionsurfaces
AT koemansander clickablepolyllysinefortheformationofbiorecognitionsurfaces
AT huskensjurriaan clickablepolyllysinefortheformationofbiorecognitionsurfaces