Cargando…

Selective separation of Xe/Kr and adsorption of water in a microporous hydrogen-bonded organic framework

We have studied the adsorption properties of Xe and Kr in a highly microporous hydrogen-bonded organic framework based on 1,3,5-tris(4-carboxyphenyl)benzene, named HOF-BTB. HOF-BTB can reversibly adsorb both noble gases, and it shows a higher affinity for Xe than Kr. At 1 bar, the adsorption amounts...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Wang-Geun, Yoon, Tae-Ung, Bae, Youn-Sang, Kim, Kwang S., Baek, Seung Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075172/
https://www.ncbi.nlm.nih.gov/pubmed/35539057
http://dx.doi.org/10.1039/c9ra08184d
Descripción
Sumario:We have studied the adsorption properties of Xe and Kr in a highly microporous hydrogen-bonded organic framework based on 1,3,5-tris(4-carboxyphenyl)benzene, named HOF-BTB. HOF-BTB can reversibly adsorb both noble gases, and it shows a higher affinity for Xe than Kr. At 1 bar, the adsorption amounts of Xe were 3.37 mmol g(−1) and 2.01 mmol g(−1) at 273 K and 295 K, respectively. Ideal adsorbed solution theory (IAST) calculation predicts selective separation of Xe over Kr from an equimolar binary Xe/Kr mixture, and breakthrough experiments demonstrate the efficient separation of Xe from the Xe/Kr mixture under a dynamic flow condition. Consecutive breakthrough experiments with simple regeneration treatment at 298 K reveal that HOF-BTB would be an energy-saving adsorbent in an adsorptive separation process, which could be attributed to the relatively low isosteric heat (Q(st)) of adsorption of Xe. The activated HOF-BTB is very stable in both water and aqueous acidic solutions for more than one month, and it also shows a well-preserved crystallinity and porosity upon water/acid treatment. Besides, HOF-BTB adsorbs about 30.5 wt%, the highest value for HOF materials, of water vapor during the adsorption–desorption cycles, with a 19% decrease in adsorption amounts of water vapor after five cycles.