Cargando…
Natural Language Processing Enhances Prediction of Functional Outcome After Acute Ischemic Stroke
BACKGROUND: Conventional prognostic scores usually require predefined clinical variables to predict outcome. The advancement of natural language processing has made it feasible to derive meaning from unstructured data. We aimed to test whether using unstructured text in electronic health records can...
Autores principales: | Sung, Sheng‐Feng, Chen, Chih‐Hao, Pan, Ru‐Chiou, Hu, Ya‐Han, Jeng, Jiann‐Shing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075227/ https://www.ncbi.nlm.nih.gov/pubmed/34796719 http://dx.doi.org/10.1161/JAHA.121.023486 |
Ejemplares similares
-
Complexity of Heart Rate Variability Can Predict Stroke-In-Evolution in Acute Ischemic Stroke Patients
por: Chen, Chih-Hao, et al.
Publicado: (2015) -
Stroke Code Improves Intravenous Thrombolysis Administration in Acute Ischemic Stroke
por: Chen, Chih-Hao, et al.
Publicado: (2014) -
Imaging‐based pregenetic screening for NOTCH3 p.R544C mutation in ischemic stroke in Taiwan
por: Cheng, Yu‐Wen, et al.
Publicado: (2020) -
Elevated Plasma Level of Soluble Form of RAGE in Ischemic Stroke Patients with Dementia
por: Tang, Sung-Chun, et al.
Publicado: (2017) -
Impact of Supratentorial Cerebral Hemorrhage on the Complexity of Heart Rate Variability in Acute Stroke
por: Chen, Chih-Hao, et al.
Publicado: (2018)