Cargando…

Development and Validation of Prediction Models for Severe Complications After Acute Ischemic Stroke: A Study Based on the Stroke Registry of Northwestern Germany

BACKGROUND: The treatment of stroke has been undergoing rapid changes. As treatment options progress, prediction of those under risk for complications becomes more important. Available models have, however, frequently been built based on data no longer representative of today’s care, in particular w...

Descripción completa

Detalles Bibliográficos
Autores principales: Bonkhoff, Anna K., Rübsamen, Nicole, Grefkes, Christian, Rost, Natalia S., Berger, Klaus, Karch, André
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075320/
https://www.ncbi.nlm.nih.gov/pubmed/35253466
http://dx.doi.org/10.1161/JAHA.121.023175
_version_ 1784701657512148992
author Bonkhoff, Anna K.
Rübsamen, Nicole
Grefkes, Christian
Rost, Natalia S.
Berger, Klaus
Karch, André
author_facet Bonkhoff, Anna K.
Rübsamen, Nicole
Grefkes, Christian
Rost, Natalia S.
Berger, Klaus
Karch, André
author_sort Bonkhoff, Anna K.
collection PubMed
description BACKGROUND: The treatment of stroke has been undergoing rapid changes. As treatment options progress, prediction of those under risk for complications becomes more important. Available models have, however, frequently been built based on data no longer representative of today’s care, in particular with respect to acute stroke management. Our aim was to build and validate prediction models for 4 clinically important, severe outcomes after stroke. METHODS AND RESULTS: We used German registry data from 152 710 patients with acute ischemic stroke obtained in 2016 (development) and 2017 (validation). We took into account potential predictors that were available at admission and focused on in‐hospital mortality, intracranial mass effect, secondary intracerebral hemorrhage, and deep vein thrombosis as outcomes. Validation cohort prediction and calibration performances were assessed using the following 4 statistical approaches: logistic regression with backward selection, l1‐regularized logistic regression, k‐nearest neighbor, and gradient boosting classifier. In‐hospital mortality and intracranial mass effects could be predicted with high accuracy (both areas under the curve, 0.90 [95% CI, 0.90–0.90]), whereas the areas under the curve for intracerebral hemorrhage (0.80 [95% CI, 0.80–0.80]) and deep vein thrombosis (0.73 [95% CI, 0.73–0.73]) were considerably lower. Stroke severity was the overall most important predictor. Models based on gradient boosting achieved better performances than those based on logistic regression for all outcomes. However, area under the curve estimates differed by a maximum of 0.02. CONCLUSIONS: We validated prediction models for 4 severe outcomes after acute ischemic stroke based on routinely collected, recent clinical data. Model performance was superior to previously proposed approaches. These predictions may help to identify patients at risk early after stroke and thus facilitate an individualized level of care.
format Online
Article
Text
id pubmed-9075320
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-90753202022-05-10 Development and Validation of Prediction Models for Severe Complications After Acute Ischemic Stroke: A Study Based on the Stroke Registry of Northwestern Germany Bonkhoff, Anna K. Rübsamen, Nicole Grefkes, Christian Rost, Natalia S. Berger, Klaus Karch, André J Am Heart Assoc Original Research BACKGROUND: The treatment of stroke has been undergoing rapid changes. As treatment options progress, prediction of those under risk for complications becomes more important. Available models have, however, frequently been built based on data no longer representative of today’s care, in particular with respect to acute stroke management. Our aim was to build and validate prediction models for 4 clinically important, severe outcomes after stroke. METHODS AND RESULTS: We used German registry data from 152 710 patients with acute ischemic stroke obtained in 2016 (development) and 2017 (validation). We took into account potential predictors that were available at admission and focused on in‐hospital mortality, intracranial mass effect, secondary intracerebral hemorrhage, and deep vein thrombosis as outcomes. Validation cohort prediction and calibration performances were assessed using the following 4 statistical approaches: logistic regression with backward selection, l1‐regularized logistic regression, k‐nearest neighbor, and gradient boosting classifier. In‐hospital mortality and intracranial mass effects could be predicted with high accuracy (both areas under the curve, 0.90 [95% CI, 0.90–0.90]), whereas the areas under the curve for intracerebral hemorrhage (0.80 [95% CI, 0.80–0.80]) and deep vein thrombosis (0.73 [95% CI, 0.73–0.73]) were considerably lower. Stroke severity was the overall most important predictor. Models based on gradient boosting achieved better performances than those based on logistic regression for all outcomes. However, area under the curve estimates differed by a maximum of 0.02. CONCLUSIONS: We validated prediction models for 4 severe outcomes after acute ischemic stroke based on routinely collected, recent clinical data. Model performance was superior to previously proposed approaches. These predictions may help to identify patients at risk early after stroke and thus facilitate an individualized level of care. John Wiley and Sons Inc. 2022-03-05 /pmc/articles/PMC9075320/ /pubmed/35253466 http://dx.doi.org/10.1161/JAHA.121.023175 Text en © 2022 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Research
Bonkhoff, Anna K.
Rübsamen, Nicole
Grefkes, Christian
Rost, Natalia S.
Berger, Klaus
Karch, André
Development and Validation of Prediction Models for Severe Complications After Acute Ischemic Stroke: A Study Based on the Stroke Registry of Northwestern Germany
title Development and Validation of Prediction Models for Severe Complications After Acute Ischemic Stroke: A Study Based on the Stroke Registry of Northwestern Germany
title_full Development and Validation of Prediction Models for Severe Complications After Acute Ischemic Stroke: A Study Based on the Stroke Registry of Northwestern Germany
title_fullStr Development and Validation of Prediction Models for Severe Complications After Acute Ischemic Stroke: A Study Based on the Stroke Registry of Northwestern Germany
title_full_unstemmed Development and Validation of Prediction Models for Severe Complications After Acute Ischemic Stroke: A Study Based on the Stroke Registry of Northwestern Germany
title_short Development and Validation of Prediction Models for Severe Complications After Acute Ischemic Stroke: A Study Based on the Stroke Registry of Northwestern Germany
title_sort development and validation of prediction models for severe complications after acute ischemic stroke: a study based on the stroke registry of northwestern germany
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075320/
https://www.ncbi.nlm.nih.gov/pubmed/35253466
http://dx.doi.org/10.1161/JAHA.121.023175
work_keys_str_mv AT bonkhoffannak developmentandvalidationofpredictionmodelsforseverecomplicationsafteracuteischemicstrokeastudybasedonthestrokeregistryofnorthwesterngermany
AT rubsamennicole developmentandvalidationofpredictionmodelsforseverecomplicationsafteracuteischemicstrokeastudybasedonthestrokeregistryofnorthwesterngermany
AT grefkeschristian developmentandvalidationofpredictionmodelsforseverecomplicationsafteracuteischemicstrokeastudybasedonthestrokeregistryofnorthwesterngermany
AT rostnatalias developmentandvalidationofpredictionmodelsforseverecomplicationsafteracuteischemicstrokeastudybasedonthestrokeregistryofnorthwesterngermany
AT bergerklaus developmentandvalidationofpredictionmodelsforseverecomplicationsafteracuteischemicstrokeastudybasedonthestrokeregistryofnorthwesterngermany
AT karchandre developmentandvalidationofpredictionmodelsforseverecomplicationsafteracuteischemicstrokeastudybasedonthestrokeregistryofnorthwesterngermany