Cargando…
Real‐Time Arrhythmia Detection Using Hybrid Convolutional Neural Networks
BACKGROUND: Accurate detection of arrhythmic events in the intensive care units (ICU) is of paramount significance in providing timely care. However, traditional ICU monitors generate a high rate of false alarms causing alarm fatigue. In this work, we develop an algorithm to improve life threatening...
Autores principales: | Bollepalli, Sandeep Chandra, Sevakula, Rahul K., Au‐Yeung, Wan‐Tai M., Kassab, Mohamad B., Merchant, Faisal M., Bazoukis, George, Boyer, Richard, Isselbacher, Eric M., Armoundas, Antonis A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075394/ https://www.ncbi.nlm.nih.gov/pubmed/34854319 http://dx.doi.org/10.1161/JAHA.121.023222 |
Ejemplares similares
-
Real-time machine learning-based intensive care unit alarm classification without prior knowledge of the underlying rhythm
por: Au-Yeung, Wan-Tai M, et al.
Publicado: (2021) -
State‐of‐the‐Art Machine Learning Techniques Aiming to Improve Patient Outcomes Pertaining to the Cardiovascular System
por: Sevakula, Rahul Kumar, et al.
Publicado: (2020) -
Ambulatory monitoring promises equitable personalized healthcare delivery in underrepresented patients
por: Kulkarni, Kanchan, et al.
Publicado: (2021) -
Cardiac Alternans: Mechanisms and Clinical Utility in Arrhythmia Prevention
por: Kulkarni, Kanchan, et al.
Publicado: (2019) -
Reduction of false alarms in the intensive care unit using an optimized machine learning based approach
por: Au-Yeung, Wan-Tai M., et al.
Publicado: (2019)