Cargando…
Information Extraction From Electronic Health Records to Predict Readmission Following Acute Myocardial Infarction: Does Natural Language Processing Using Clinical Notes Improve Prediction of Readmission?
BACKGROUND: Social risk factors influence rehospitalization rates yet are challenging to incorporate into prediction models. Integration of social risk factors using natural language processing (NLP) and machine learning could improve risk prediction of 30‐day readmission following an acute myocardi...
Autores principales: | Brown, Jeremiah R., Ricket, Iben M., Reeves, Ruth M., Shah, Rashmee U., Goodrich, Christine A., Gobbel, Glen, Stabler, Meagan E., Perkins, Amy M., Minter, Freneka, Cox, Kevin C., Dorn, Chad, Denton, Jason, Bray, Bruce E., Gouripeddi, Ramkiran, Higgins, John, Chapman, Wendy W., MacKenzie, Todd, Matheny, Michael E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075435/ https://www.ncbi.nlm.nih.gov/pubmed/35322668 http://dx.doi.org/10.1161/JAHA.121.024198 |
Ejemplares similares
-
Development of Electronic Health Record–Based Prediction Models for 30-Day Readmission Risk Among Patients Hospitalized for Acute Myocardial Infarction
por: Matheny, Michael E., et al.
Publicado: (2021) -
Predictive Model for Heart Failure Readmission Using Nationwide Readmissions Database
por: Zheng, Lillian, et al.
Publicado: (2022) -
Reducing readmissions in patients with cirrhosis: the time to act is now
por: Patel, Arpan, et al.
Publicado: (2021) -
Novel integration of governmental data sources using machine learning to identify super-utilization among U.S. counties
por: Ricket, Iben M., et al.
Publicado: (2023) -
Predicting Readmission at Early Hospitalization Using Electronic Clinical Data: An Early Readmission Risk Score
por: Tabak, Ying P., et al.
Publicado: (2017)