Cargando…
Multiclass Arrhythmia Detection and Classification From Photoplethysmography Signals Using a Deep Convolutional Neural Network
BACKGROUND: Studies have reported the use of photoplethysmography signals to detect atrial fibrillation; however, the use of photoplethysmography signals in classifying multiclass arrhythmias has rarely been reported. Our study investigated the feasibility of using photoplethysmography signals and a...
Autores principales: | Liu, Zengding, Zhou, Bin, Jiang, Zhiming, Chen, Xi, Li, Ye, Tang, Min, Miao, Fen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075456/ https://www.ncbi.nlm.nih.gov/pubmed/35322685 http://dx.doi.org/10.1161/JAHA.121.023555 |
Ejemplares similares
-
Multiclass Convolution Neural Network for Classification of COVID-19 CT Images
por: Woan Ching, Serena Low, et al.
Publicado: (2022) -
Multiclass classification of breast cancer histopathology images using multilevel features of deep convolutional neural network
por: Hameed, Zabit, et al.
Publicado: (2022) -
Flamingo-Optimization-Based Deep Convolutional Neural Network for IoT-Based Arrhythmia Classification
por: Kumar, Ashwani, et al.
Publicado: (2023) -
Multiclass Classification of Metrologically Resourceful Tripartite Quantum States with Deep Neural Networks
por: Rizvi, Syed Muhammad Abuzar, et al.
Publicado: (2022) -
Explainability Metrics of Deep Convolutional Networks for Photoplethysmography Quality Assessment
por: ZHANG, OLIVER, et al.
Publicado: (2021)