Cargando…
Advancing fabrication and properties of three-dimensional graphene–alginate scaffolds for application in neural tissue engineering
Neural tissue engineering provides enormous potential for restoring and improving the function of diseased/damaged tissues and promising opportunities in regenerative medicine, stem cell technology, and drug discovery. The conventional 2D cell cultures have many limitations to provide informative an...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075535/ https://www.ncbi.nlm.nih.gov/pubmed/35539075 http://dx.doi.org/10.1039/c9ra07481c |
_version_ | 1784701707503009792 |
---|---|
author | Mansouri, Negar Al-Sarawi, Said F. Mazumdar, Jagan Losic, Dusan |
author_facet | Mansouri, Negar Al-Sarawi, Said F. Mazumdar, Jagan Losic, Dusan |
author_sort | Mansouri, Negar |
collection | PubMed |
description | Neural tissue engineering provides enormous potential for restoring and improving the function of diseased/damaged tissues and promising opportunities in regenerative medicine, stem cell technology, and drug discovery. The conventional 2D cell cultures have many limitations to provide informative and realistic neural interactions and network formation. Hence, there is a need to develop three-dimensional (3D) bioscaffolds to facilitate culturing cells with matched microenvironment for cell growth and interconnected pores for penetration and migration of cells. Herein, we report the synthesis and characterization of 3D composite bioscaffolds based on graphene-biopolymer with porous structure and improved performance for tissue engineering. A simple, eco-friendly synthetic method is introduced and optimized for synthesis of this hybrid fibrous scaffold by combining Graphene Oxide (GO) and Sodium Alginate (Na-ALG) which are specifically selected to match the mechanical strength of the central nervous system (CNS) tissue and provide porous structure for connective tissue engineering. Properties of the developed scaffold in terms of the structure, porosity, thermal stability, mechanical properties, and electrical conductivity are presented. These properties were optimised through key synthesis conditions including GO concentrations, reduction process and crosslinking time. In contrast to other studies, the presented structure maintains its stability in aqueous media and uses a bio-friendly reducing agent which enable the structure to enhance neuron cell interactions and act as nerve conduits for neurological diseases. |
format | Online Article Text |
id | pubmed-9075535 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90755352022-05-09 Advancing fabrication and properties of three-dimensional graphene–alginate scaffolds for application in neural tissue engineering Mansouri, Negar Al-Sarawi, Said F. Mazumdar, Jagan Losic, Dusan RSC Adv Chemistry Neural tissue engineering provides enormous potential for restoring and improving the function of diseased/damaged tissues and promising opportunities in regenerative medicine, stem cell technology, and drug discovery. The conventional 2D cell cultures have many limitations to provide informative and realistic neural interactions and network formation. Hence, there is a need to develop three-dimensional (3D) bioscaffolds to facilitate culturing cells with matched microenvironment for cell growth and interconnected pores for penetration and migration of cells. Herein, we report the synthesis and characterization of 3D composite bioscaffolds based on graphene-biopolymer with porous structure and improved performance for tissue engineering. A simple, eco-friendly synthetic method is introduced and optimized for synthesis of this hybrid fibrous scaffold by combining Graphene Oxide (GO) and Sodium Alginate (Na-ALG) which are specifically selected to match the mechanical strength of the central nervous system (CNS) tissue and provide porous structure for connective tissue engineering. Properties of the developed scaffold in terms of the structure, porosity, thermal stability, mechanical properties, and electrical conductivity are presented. These properties were optimised through key synthesis conditions including GO concentrations, reduction process and crosslinking time. In contrast to other studies, the presented structure maintains its stability in aqueous media and uses a bio-friendly reducing agent which enable the structure to enhance neuron cell interactions and act as nerve conduits for neurological diseases. The Royal Society of Chemistry 2019-11-12 /pmc/articles/PMC9075535/ /pubmed/35539075 http://dx.doi.org/10.1039/c9ra07481c Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Mansouri, Negar Al-Sarawi, Said F. Mazumdar, Jagan Losic, Dusan Advancing fabrication and properties of three-dimensional graphene–alginate scaffolds for application in neural tissue engineering |
title | Advancing fabrication and properties of three-dimensional graphene–alginate scaffolds for application in neural tissue engineering |
title_full | Advancing fabrication and properties of three-dimensional graphene–alginate scaffolds for application in neural tissue engineering |
title_fullStr | Advancing fabrication and properties of three-dimensional graphene–alginate scaffolds for application in neural tissue engineering |
title_full_unstemmed | Advancing fabrication and properties of three-dimensional graphene–alginate scaffolds for application in neural tissue engineering |
title_short | Advancing fabrication and properties of three-dimensional graphene–alginate scaffolds for application in neural tissue engineering |
title_sort | advancing fabrication and properties of three-dimensional graphene–alginate scaffolds for application in neural tissue engineering |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075535/ https://www.ncbi.nlm.nih.gov/pubmed/35539075 http://dx.doi.org/10.1039/c9ra07481c |
work_keys_str_mv | AT mansourinegar advancingfabricationandpropertiesofthreedimensionalgraphenealginatescaffoldsforapplicationinneuraltissueengineering AT alsarawisaidf advancingfabricationandpropertiesofthreedimensionalgraphenealginatescaffoldsforapplicationinneuraltissueengineering AT mazumdarjagan advancingfabricationandpropertiesofthreedimensionalgraphenealginatescaffoldsforapplicationinneuraltissueengineering AT losicdusan advancingfabricationandpropertiesofthreedimensionalgraphenealginatescaffoldsforapplicationinneuraltissueengineering |