Cargando…
Explainable AI toward understanding the performance of the top three TADPOLE Challenge methods in the forecast of Alzheimer’s disease diagnosis
The Alzheimer′s Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge is the most comprehensive challenge to date with regard to the number of subjects, considered features, and challenge participants. The initial objective of TADPOLE was the identification of the most predictive data, fe...
Autores principales: | Hernandez, Monica, Ramon-Julvez, Ubaldo, Ferraz, Francisco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075665/ https://www.ncbi.nlm.nih.gov/pubmed/35522653 http://dx.doi.org/10.1371/journal.pone.0264695 |
Ejemplares similares
-
Explainable artificial intelligence toward usable and trustworthy computer-aided diagnosis of multiple sclerosis from Optical Coherence Tomography
por: Hernandez, Monica, et al.
Publicado: (2023) -
Partial Differential Equation-Constrained Diffeomorphic Registration from Sum of Squared Differences to Normalized Cross-Correlation, Normalized Gradient Fields, and Mutual Information: A Unifying Framework
por: Hernandez, Monica, et al.
Publicado: (2022) -
The challenges of explainable AI in biomedical data science
por: Han, Henry, et al.
Publicado: (2022) -
Explainable AI
por: Samek, Wojciech, et al.
Publicado: (2019) -
Neurorobots as a Means Toward Neuroethology and Explainable AI
por: Chen, Kexin, et al.
Publicado: (2020)