Cargando…
Sparse Representation-Based Denoising for High-Resolution Brain Activation and Functional Connectivity Modeling: A Task fMRI Study
In the field of neuroimaging and cognitive neuroscience, functional Magnetic Resonance Imaging (fMRI) has been widely used to study the functional localization and connectivity of the brain. However, the inherently low signal-to-noise ratio (SNR) of the fMRI signals greatly limits the accuracy and r...
Autores principales: | JEONG, SEONGAH, LI, XIANG, YANG, JIARUI, LI, QUANZHENG, TAROKH, VAHID |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075697/ https://www.ncbi.nlm.nih.gov/pubmed/35528966 http://dx.doi.org/10.1109/access.2020.2971261 |
Ejemplares similares
-
Non-Local SVD Denoising of MRI Based on Sparse Representations
por: Leal, Nallig, et al.
Publicado: (2020) -
Intersubject MVPD: Empirical comparison of fMRI denoising methods for connectivity analysis
por: Li, Yichen, et al.
Publicado: (2019) -
Sparse coding representation of emotional brain states in fMRI data
por: Mamlouk, Amir Madany, et al.
Publicado: (2010) -
GLMdenoise: a fast, automated technique for denoising task-based fMRI data
por: Kay, Kendrick N., et al.
Publicado: (2013) -
Denoising task‐related fMRI: Balancing noise reduction against signal loss
por: Hoeppli, M. E., et al.
Publicado: (2023)