Cargando…
Measuring vaccine effectiveness from limited public health datasets: Framework and estimates from India’s second COVID wave
Despite an urgent need, authorities in many countries are struggling to track COVID vaccine effectiveness (VE) because standard VE measures cannot be calculated from their public health data. Here, we use regression discontinuity design (RDD) to estimate VE, motivated by such limitations in public h...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075799/ https://www.ncbi.nlm.nih.gov/pubmed/35522748 http://dx.doi.org/10.1126/sciadv.abn4274 |
Sumario: | Despite an urgent need, authorities in many countries are struggling to track COVID vaccine effectiveness (VE) because standard VE measures cannot be calculated from their public health data. Here, we use regression discontinuity design (RDD) to estimate VE, motivated by such limitations in public health records from West Bengal, India. These data cover 8,755,414 COVID vaccinations (90% ChAdOx1 NCov-19, almost all first doses, until May 2021), 8,179,635 tests, and 141,800 hospitalizations. The standard RDD exploits age-based vaccine eligibility; we also introduce a new RDD-based VE measure that improves on the standard one when better data are available. Applying these measures, we find a VE of 55.2% (95% confidence interval: 44.5 to 65.0%) against symptomatic disease, 80.1% (63.3 to 88.8%) against hospitalizations, and 85.5% (24.8 to 99.2%) against intensive care/critical care/high dependency admissions or deaths. Other data-deficient countries with age-based eligibility for any vaccine—and not just COVID vaccines—can also use these easy-to-implement measures to inform their own immunization policies. |
---|