Cargando…
CancerVar: An artificial intelligence–empowered platform for clinical interpretation of somatic mutations in cancer
Several knowledgebases are manually curated to support clinical interpretations of thousands of hotspot somatic mutations in cancer. However, discrepancies or even conflicting interpretations are observed among these databases. Furthermore, many previously undocumented mutations may have clinical or...
Autores principales: | Li, Quan, Ren, Zilin, Cao, Kajia, Li, Marilyn M., Wang, Kai, Zhou, Yunyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075800/ https://www.ncbi.nlm.nih.gov/pubmed/35544644 http://dx.doi.org/10.1126/sciadv.abj1624 |
Ejemplares similares
-
Transplanted organoids empower human preclinical assessment of drug candidate for the clinic
por: Westerling-Bui, Amy D., et al.
Publicado: (2022) -
Efficient cancer modeling through CRISPR-Cas9/HDR-based somatic precision gene editing in mice
por: Bu, Wen, et al.
Publicado: (2023) -
A comprehensive long-read isoform analysis platform and sequencing resource for breast cancer
por: Veiga, Diogo F. T., et al.
Publicado: (2022) -
A universal sequencing read interpreter
por: Kijima, Yusuke, et al.
Publicado: (2023) -
Model performance and interpretability of semi-supervised generative adversarial networks to predict oncogenic variants with unlabeled data
por: Ren, Zilin, et al.
Publicado: (2023)