Cargando…
Machine learning of material properties: Predictive and interpretable multilinear models
Machine learning models can provide fast and accurate predictions of material properties but often lack transparency. Interpretability techniques can be used with black box solutions, or alternatively, models can be created that are directly interpretable. We revisit material datasets used in severa...
Autores principales: | Allen, Alice E. A., Tkatchenko, Alexandre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075804/ https://www.ncbi.nlm.nih.gov/pubmed/35522750 http://dx.doi.org/10.1126/sciadv.abm7185 |
Ejemplares similares
-
Accurate global machine learning force fields for molecules with hundreds of atoms
por: Chmiela, Stefan, et al.
Publicado: (2023) -
Machine learning enables interpretable discovery of innovative polymers for gas separation membranes
por: Yang, Jason, et al.
Publicado: (2022) -
Multilinear algebra
por: Greub, Werner H
Publicado: (1978) -
Multilinear algebra
por: Greub, W H
Publicado: (1967) -
Precursor recommendation for inorganic synthesis by machine learning materials similarity from scientific literature
por: He, Tanjin, et al.
Publicado: (2023)