Cargando…

Highly efficient and rapid removal of arsenic(iii) from aqueous solutions by nanoscale zero-valent iron supported on a zirconium 1,4-dicarboxybenzene metal–organic framework (UiO-66 MOF)

A zirconium 1,4-dicarboxybenzene metal–organic framework (UiO-66 MOF) was successfully used as a template to enhance the distribution and activity of nanoscale zero-valent iron (NZVI). MOF-NZVI showed good anti-interference ability to co-existing ions (Ca(2+), Mn(2+), Cu(2+), H(2)PO(4)(−) and SO(4)(...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Tingyi, Zhang, Zhengchao, Wang, Zhaohui, Wang, Zhong-Liang, Bush, Richard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076076/
https://www.ncbi.nlm.nih.gov/pubmed/35540636
http://dx.doi.org/10.1039/c9ra08595e
Descripción
Sumario:A zirconium 1,4-dicarboxybenzene metal–organic framework (UiO-66 MOF) was successfully used as a template to enhance the distribution and activity of nanoscale zero-valent iron (NZVI). MOF-NZVI showed good anti-interference ability to co-existing ions (Ca(2+), Mn(2+), Cu(2+), H(2)PO(4)(−) and SO(4)(2−)) and organic acids (oxalic acid and citric acid). SEM and TEM analyses indicated that the MOF as a support efficiently prevent NZVI from aggregation for quick and effective removal of As(iii). Through the non-linear least-squares (NLLS) adjustment, As(iii) removal by MOF-NZVI could be well fitted by pseudo first and second order reaction kinetics, as well as the Freundlich isotherm. FTIR, XRD and XPS results verified that NZVI and iron oxyhydroxides (Fe(3)O(4), γ-Fe(2)O(3), γ-FeOOH and α-FeOOH) might be responsible for the effective removal of As(iii) and its oxidized product As(v) with an adsorption capacity of 360.6 mg As per g NZVI through chemical oxidation and physical adsorption. This work indicates that MOF-NZVI with good reusability and high efficiency is promising for application in As(iii)-polluted wastewater treatment.