Cargando…
Machine Learning Models for Classifying High- and Low-Grade Gliomas: A Systematic Review and Quality of Reporting Analysis
OBJECTIVES: To systematically review, assess the reporting quality of, and discuss improvement opportunities for studies describing machine learning (ML) models for glioma grade prediction. METHODS: This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses of Diagnos...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076130/ https://www.ncbi.nlm.nih.gov/pubmed/35530302 http://dx.doi.org/10.3389/fonc.2022.856231 |
_version_ | 1784701844826619904 |
---|---|
author | Bahar, Ryan C. Merkaj, Sara Cassinelli Petersen, Gabriel I. Tillmanns, Niklas Subramanian, Harry Brim, Waverly Rose Zeevi, Tal Staib, Lawrence Kazarian, Eve Lin, MingDe Bousabarah, Khaled Huttner, Anita J. Pala, Andrej Payabvash, Seyedmehdi Ivanidze, Jana Cui, Jin Malhotra, Ajay Aboian, Mariam S. |
author_facet | Bahar, Ryan C. Merkaj, Sara Cassinelli Petersen, Gabriel I. Tillmanns, Niklas Subramanian, Harry Brim, Waverly Rose Zeevi, Tal Staib, Lawrence Kazarian, Eve Lin, MingDe Bousabarah, Khaled Huttner, Anita J. Pala, Andrej Payabvash, Seyedmehdi Ivanidze, Jana Cui, Jin Malhotra, Ajay Aboian, Mariam S. |
author_sort | Bahar, Ryan C. |
collection | PubMed |
description | OBJECTIVES: To systematically review, assess the reporting quality of, and discuss improvement opportunities for studies describing machine learning (ML) models for glioma grade prediction. METHODS: This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses of Diagnostic Test Accuracy (PRISMA-DTA) statement. A systematic search was performed in September 2020, and repeated in January 2021, on four databases: Embase, Medline, CENTRAL, and Web of Science Core Collection. Publications were screened in Covidence, and reporting quality was measured against the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Statement. Descriptive statistics were calculated using GraphPad Prism 9. RESULTS: The search identified 11,727 candidate articles with 1,135 articles undergoing full text review and 85 included in analysis. 67 (79%) articles were published between 2018-2021. The mean prediction accuracy of the best performing model in each study was 0.89 ± 0.09. The most common algorithm for conventional machine learning studies was Support Vector Machine (mean accuracy: 0.90 ± 0.07) and for deep learning studies was Convolutional Neural Network (mean accuracy: 0.91 ± 0.10). Only one study used both a large training dataset (n>200) and external validation (accuracy: 0.72) for their model. The mean adherence rate to TRIPOD was 44.5% ± 11.1%, with poor reporting adherence for model performance (0%), abstracts (0%), and titles (0%). CONCLUSIONS: The application of ML to glioma grade prediction has grown substantially, with ML model studies reporting high predictive accuracies but lacking essential metrics and characteristics for assessing model performance. Several domains, including generalizability and reproducibility, warrant further attention to enable translation into clinical practice. SYSTEMATIC REVIEW REGISTRATION: PROSPERO, identifier CRD42020209938. |
format | Online Article Text |
id | pubmed-9076130 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-90761302022-05-07 Machine Learning Models for Classifying High- and Low-Grade Gliomas: A Systematic Review and Quality of Reporting Analysis Bahar, Ryan C. Merkaj, Sara Cassinelli Petersen, Gabriel I. Tillmanns, Niklas Subramanian, Harry Brim, Waverly Rose Zeevi, Tal Staib, Lawrence Kazarian, Eve Lin, MingDe Bousabarah, Khaled Huttner, Anita J. Pala, Andrej Payabvash, Seyedmehdi Ivanidze, Jana Cui, Jin Malhotra, Ajay Aboian, Mariam S. Front Oncol Oncology OBJECTIVES: To systematically review, assess the reporting quality of, and discuss improvement opportunities for studies describing machine learning (ML) models for glioma grade prediction. METHODS: This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses of Diagnostic Test Accuracy (PRISMA-DTA) statement. A systematic search was performed in September 2020, and repeated in January 2021, on four databases: Embase, Medline, CENTRAL, and Web of Science Core Collection. Publications were screened in Covidence, and reporting quality was measured against the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Statement. Descriptive statistics were calculated using GraphPad Prism 9. RESULTS: The search identified 11,727 candidate articles with 1,135 articles undergoing full text review and 85 included in analysis. 67 (79%) articles were published between 2018-2021. The mean prediction accuracy of the best performing model in each study was 0.89 ± 0.09. The most common algorithm for conventional machine learning studies was Support Vector Machine (mean accuracy: 0.90 ± 0.07) and for deep learning studies was Convolutional Neural Network (mean accuracy: 0.91 ± 0.10). Only one study used both a large training dataset (n>200) and external validation (accuracy: 0.72) for their model. The mean adherence rate to TRIPOD was 44.5% ± 11.1%, with poor reporting adherence for model performance (0%), abstracts (0%), and titles (0%). CONCLUSIONS: The application of ML to glioma grade prediction has grown substantially, with ML model studies reporting high predictive accuracies but lacking essential metrics and characteristics for assessing model performance. Several domains, including generalizability and reproducibility, warrant further attention to enable translation into clinical practice. SYSTEMATIC REVIEW REGISTRATION: PROSPERO, identifier CRD42020209938. Frontiers Media S.A. 2022-04-22 /pmc/articles/PMC9076130/ /pubmed/35530302 http://dx.doi.org/10.3389/fonc.2022.856231 Text en Copyright © 2022 Bahar, Merkaj, Cassinelli Petersen, Tillmanns, Subramanian, Brim, Zeevi, Staib, Kazarian, Lin, Bousabarah, Huttner, Pala, Payabvash, Ivanidze, Cui, Malhotra and Aboian https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Oncology Bahar, Ryan C. Merkaj, Sara Cassinelli Petersen, Gabriel I. Tillmanns, Niklas Subramanian, Harry Brim, Waverly Rose Zeevi, Tal Staib, Lawrence Kazarian, Eve Lin, MingDe Bousabarah, Khaled Huttner, Anita J. Pala, Andrej Payabvash, Seyedmehdi Ivanidze, Jana Cui, Jin Malhotra, Ajay Aboian, Mariam S. Machine Learning Models for Classifying High- and Low-Grade Gliomas: A Systematic Review and Quality of Reporting Analysis |
title | Machine Learning Models for Classifying High- and Low-Grade Gliomas: A Systematic Review and Quality of Reporting Analysis |
title_full | Machine Learning Models for Classifying High- and Low-Grade Gliomas: A Systematic Review and Quality of Reporting Analysis |
title_fullStr | Machine Learning Models for Classifying High- and Low-Grade Gliomas: A Systematic Review and Quality of Reporting Analysis |
title_full_unstemmed | Machine Learning Models for Classifying High- and Low-Grade Gliomas: A Systematic Review and Quality of Reporting Analysis |
title_short | Machine Learning Models for Classifying High- and Low-Grade Gliomas: A Systematic Review and Quality of Reporting Analysis |
title_sort | machine learning models for classifying high- and low-grade gliomas: a systematic review and quality of reporting analysis |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076130/ https://www.ncbi.nlm.nih.gov/pubmed/35530302 http://dx.doi.org/10.3389/fonc.2022.856231 |
work_keys_str_mv | AT baharryanc machinelearningmodelsforclassifyinghighandlowgradegliomasasystematicreviewandqualityofreportinganalysis AT merkajsara machinelearningmodelsforclassifyinghighandlowgradegliomasasystematicreviewandqualityofreportinganalysis AT cassinellipetersengabrieli machinelearningmodelsforclassifyinghighandlowgradegliomasasystematicreviewandqualityofreportinganalysis AT tillmannsniklas machinelearningmodelsforclassifyinghighandlowgradegliomasasystematicreviewandqualityofreportinganalysis AT subramanianharry machinelearningmodelsforclassifyinghighandlowgradegliomasasystematicreviewandqualityofreportinganalysis AT brimwaverlyrose machinelearningmodelsforclassifyinghighandlowgradegliomasasystematicreviewandqualityofreportinganalysis AT zeevital machinelearningmodelsforclassifyinghighandlowgradegliomasasystematicreviewandqualityofreportinganalysis AT staiblawrence machinelearningmodelsforclassifyinghighandlowgradegliomasasystematicreviewandqualityofreportinganalysis AT kazarianeve machinelearningmodelsforclassifyinghighandlowgradegliomasasystematicreviewandqualityofreportinganalysis AT linmingde machinelearningmodelsforclassifyinghighandlowgradegliomasasystematicreviewandqualityofreportinganalysis AT bousabarahkhaled machinelearningmodelsforclassifyinghighandlowgradegliomasasystematicreviewandqualityofreportinganalysis AT huttneranitaj machinelearningmodelsforclassifyinghighandlowgradegliomasasystematicreviewandqualityofreportinganalysis AT palaandrej machinelearningmodelsforclassifyinghighandlowgradegliomasasystematicreviewandqualityofreportinganalysis AT payabvashseyedmehdi machinelearningmodelsforclassifyinghighandlowgradegliomasasystematicreviewandqualityofreportinganalysis AT ivanidzejana machinelearningmodelsforclassifyinghighandlowgradegliomasasystematicreviewandqualityofreportinganalysis AT cuijin machinelearningmodelsforclassifyinghighandlowgradegliomasasystematicreviewandqualityofreportinganalysis AT malhotraajay machinelearningmodelsforclassifyinghighandlowgradegliomasasystematicreviewandqualityofreportinganalysis AT aboianmariams machinelearningmodelsforclassifyinghighandlowgradegliomasasystematicreviewandqualityofreportinganalysis |