Cargando…
Machine Learning Models for Classifying High- and Low-Grade Gliomas: A Systematic Review and Quality of Reporting Analysis
OBJECTIVES: To systematically review, assess the reporting quality of, and discuss improvement opportunities for studies describing machine learning (ML) models for glioma grade prediction. METHODS: This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses of Diagnos...
Autores principales: | Bahar, Ryan C., Merkaj, Sara, Cassinelli Petersen, Gabriel I., Tillmanns, Niklas, Subramanian, Harry, Brim, Waverly Rose, Zeevi, Tal, Staib, Lawrence, Kazarian, Eve, Lin, MingDe, Bousabarah, Khaled, Huttner, Anita J., Pala, Andrej, Payabvash, Seyedmehdi, Ivanidze, Jana, Cui, Jin, Malhotra, Ajay, Aboian, Mariam S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076130/ https://www.ncbi.nlm.nih.gov/pubmed/35530302 http://dx.doi.org/10.3389/fonc.2022.856231 |
Ejemplares similares
-
Machine Learning Tools for Image-Based Glioma Grading and the Quality of Their Reporting: Challenges and Opportunities
por: Merkaj, Sara, et al.
Publicado: (2022) -
OTHR-15. Assessment of TRIPOD adherence in articles developing machine learning models for differentiation of glioma from brain metastasis
por: Jekel, Leon, et al.
Publicado: (2021) -
Identifying clinically applicable machine learning algorithms for glioma segmentation: recent advances and discoveries
por: Tillmanns, Niklas, et al.
Publicado: (2022) -
Machine Learning Applications for Differentiation of Glioma from Brain Metastasis—A Systematic Review
por: Jekel, Leon, et al.
Publicado: (2022) -
OTHR-12. The development of machine learning algorithms for the differentiation of glioma and brain metastases – a systematic review
por: Brim, Waverly Rose, et al.
Publicado: (2021)