Cargando…
Interpretable machine learning identifies paediatric Systemic Lupus Erythematosus subtypes based on gene expression data
Transcriptomic analyses are commonly used to identify differentially expressed genes between patients and controls, or within individuals across disease courses. These methods, whilst effective, cannot encompass the combinatorial effects of genes driving disease. We applied rule-based machine learni...
Autores principales: | Yones, Sara A., Annett, Alva, Stoll, Patricia, Diamanti, Klev, Holmfeldt, Linda, Barrenäs, Carl Fredrik, Meadows, Jennifer R. S., Komorowski, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076598/ https://www.ncbi.nlm.nih.gov/pubmed/35523803 http://dx.doi.org/10.1038/s41598-022-10853-1 |
Ejemplares similares
-
Machine Learning-Based Analysis of Glioma Grades Reveals Co-Enrichment
por: Garbulowski, Mateusz, et al.
Publicado: (2022) -
Interpretable Machine Learning Reveals Dissimilarities Between Subtypes of Autism Spectrum Disorder
por: Garbulowski, Mateusz, et al.
Publicado: (2021) -
R.ROSETTA: an interpretable machine learning framework
por: Garbulowski, Mateusz, et al.
Publicado: (2021) -
MetaFetcheR: An R Package for Complete Mapping of Small-Compound Data
por: Yones, Sara A., et al.
Publicado: (2021) -
Nonisomorphic and Nonisotopic Multidermatomal Discoid Lupus Erythematosus – A Rare Subtype of Cutaneous Lupus Erythematosus
por: Choudhary, Sanjiv, et al.
Publicado: (2020)