Cargando…
Neural signals regulating motor synchronization in the primate deep cerebellar nuclei
Movements synchronized with external rhythms are ubiquitous in our daily lives. Despite the involvement of the cerebellum, the underlying mechanism remains unclear. In monkeys performing synchronized saccades to periodically alternating visual stimuli, we found that neuronal activity in the cerebell...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076601/ https://www.ncbi.nlm.nih.gov/pubmed/35523898 http://dx.doi.org/10.1038/s41467-022-30246-2 |
Sumario: | Movements synchronized with external rhythms are ubiquitous in our daily lives. Despite the involvement of the cerebellum, the underlying mechanism remains unclear. In monkeys performing synchronized saccades to periodically alternating visual stimuli, we found that neuronal activity in the cerebellar dentate nucleus correlated with the timing of the next saccade and the current temporal error. One-third of the neurons were active regardless of saccade direction and showed greater activity for synchronized than for reactive saccades. During the transition from reactive to predictive saccades in each trial, the activity of these neurons coincided with target onset, representing an internal model of rhythmic structure rather than a specific motor command. The behavioural changes induced by electrical stimulation were explained by activating different groups of neurons at various strengths, suggesting that the lateral cerebellum contains multiple functional modules for the acquisition of internal rhythms, predictive motor control, and error detection during synchronized movements. |
---|