Cargando…

A novel study on the reduction of non-exhaust particulate matter emissions through system vibration control

The need to reduce non-exhaust particulate matter emissions is of paramount importance as they pose repercussions on human lives and the environment. In this study, a novel way to limit emissions is proposed based on the minimization of the vibration of the mating bodies. Two model friction material...

Descripción completa

Detalles Bibliográficos
Autores principales: Jayashree, Priyadarshini, Rustighi, Emiliano, Straffelini, Giovanni
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076615/
https://www.ncbi.nlm.nih.gov/pubmed/35523937
http://dx.doi.org/10.1038/s41598-022-11703-w
Descripción
Sumario:The need to reduce non-exhaust particulate matter emissions is of paramount importance as they pose repercussions on human lives and the environment. In this study, a novel way to limit emissions is proposed based on the minimization of the vibration of the mating bodies. Two model friction material formulations were tested in the form of pins and paired with a pearlitic grey cast iron disc counterface in a laboratory pin on disc apparatus. To reduce the vibrations, a damping tape was wrapped around the pins. With the damping of vibration, a significant drop in the emissions was recorded, and this was correlated with the friction layer establishment during sliding, which observed low disruption. It is believed that the use of this method for reducing emissions can accompany the optimization phase of the brake squeal noise of friction materials, thereby, providing new design perspectives.