Cargando…
Split BiRNN for real-time activity recognition using radar and deep learning
Radar systems can be used to perform human activity recognition in a privacy preserving manner. This can be achieved by using Deep Neural Networks, which are able to effectively process the complex radar data. Often these networks are large and do not scale well when processing a large amount of rad...
Autores principales: | Werthen-Brabants, Lorin, Bhavanasi, Geethika, Couckuyt, Ivo, Dhaene, Tom, Deschrijver, Dirk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076655/ https://www.ncbi.nlm.nih.gov/pubmed/35523811 http://dx.doi.org/10.1038/s41598-022-08240-x |
Ejemplares similares
-
A multitask bi-directional RNN model for named entity recognition on Chinese electronic medical records
por: Chowdhury, Shanta, et al.
Publicado: (2018) -
Prediction of delayed graft function after kidney transplantation: comparison between logistic regression and machine learning methods
por: Decruyenaere, Alexander, et al.
Publicado: (2015) -
Long short-term memory RNN for biomedical named entity recognition
por: Lyu, Chen, et al.
Publicado: (2017) -
Deep learning for named entity recognition on Chinese electronic medical records: Combining deep transfer learning with multitask bi-directional LSTM RNN
por: Dong, Xishuang, et al.
Publicado: (2019) -
RNN and BiLSTM Fusion for Accurate Automatic Epileptic Seizure Diagnosis Using EEG Signals
por: Samee, Nagwan Abdel, et al.
Publicado: (2022)