Cargando…
Bayesian causal network modeling suggests adolescent cannabis use accelerates prefrontal cortical thinning
While there is substantial evidence that cannabis use is associated with differences in human brain development, most of this evidence is correlational in nature. Bayesian causal network (BCN) modeling attempts to identify probable causal relationships in correlational data using conditional probabi...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076659/ https://www.ncbi.nlm.nih.gov/pubmed/35523763 http://dx.doi.org/10.1038/s41398-022-01956-4 |
_version_ | 1784701975886036992 |
---|---|
author | Owens, Max M. Albaugh, Matthew D. Allgaier, Nicholas Yuan, Dekang Robert, Gabriel Cupertino, Renata B. Spechler, Philip A. Juliano, Anthony Hahn, Sage Banaschewski, Tobias Bokde, Arun L. W. Desrivières, Sylvane Flor, Herta Grigis, Antoine Gowland, Penny Heinz, Andreas Brühl, Rüdiger Martinot, Jean-Luc Martinot, Marie-Laure Paillère Artiges, Eric Nees, Frauke Orfanos, Dimitri Papadopoulos Lemaitre, Herve Paus, Tomáš Poustka, Luise Millenet, Sabina Fröhner, Juliane H. Smolka, Michael N. Walter, Henrik Whelan, Robert Mackey, Scott Schumann, Gunter Garavan, Hugh |
author_facet | Owens, Max M. Albaugh, Matthew D. Allgaier, Nicholas Yuan, Dekang Robert, Gabriel Cupertino, Renata B. Spechler, Philip A. Juliano, Anthony Hahn, Sage Banaschewski, Tobias Bokde, Arun L. W. Desrivières, Sylvane Flor, Herta Grigis, Antoine Gowland, Penny Heinz, Andreas Brühl, Rüdiger Martinot, Jean-Luc Martinot, Marie-Laure Paillère Artiges, Eric Nees, Frauke Orfanos, Dimitri Papadopoulos Lemaitre, Herve Paus, Tomáš Poustka, Luise Millenet, Sabina Fröhner, Juliane H. Smolka, Michael N. Walter, Henrik Whelan, Robert Mackey, Scott Schumann, Gunter Garavan, Hugh |
author_sort | Owens, Max M. |
collection | PubMed |
description | While there is substantial evidence that cannabis use is associated with differences in human brain development, most of this evidence is correlational in nature. Bayesian causal network (BCN) modeling attempts to identify probable causal relationships in correlational data using conditional probabilities to estimate directional associations between a set of interrelated variables. In this study, we employed BCN modeling in 637 adolescents from the IMAGEN study who were cannabis naïve at age 14 to provide evidence that the accelerated prefrontal cortical thinning found previously in adolescent cannabis users by Albaugh et al. [1] is a result of cannabis use causally affecting neurodevelopment. BCNs incorporated data on cannabis use, prefrontal cortical thickness, and other factors related to both brain development and cannabis use, including demographics, psychopathology, childhood adversity, and other substance use. All BCN algorithms strongly suggested a directional relationship from adolescent cannabis use to accelerated cortical thinning. While BCN modeling alone does not prove a causal relationship, these results are consistent with a body of animal and human research suggesting that adolescent cannabis use adversely affects brain development. |
format | Online Article Text |
id | pubmed-9076659 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-90766592022-05-08 Bayesian causal network modeling suggests adolescent cannabis use accelerates prefrontal cortical thinning Owens, Max M. Albaugh, Matthew D. Allgaier, Nicholas Yuan, Dekang Robert, Gabriel Cupertino, Renata B. Spechler, Philip A. Juliano, Anthony Hahn, Sage Banaschewski, Tobias Bokde, Arun L. W. Desrivières, Sylvane Flor, Herta Grigis, Antoine Gowland, Penny Heinz, Andreas Brühl, Rüdiger Martinot, Jean-Luc Martinot, Marie-Laure Paillère Artiges, Eric Nees, Frauke Orfanos, Dimitri Papadopoulos Lemaitre, Herve Paus, Tomáš Poustka, Luise Millenet, Sabina Fröhner, Juliane H. Smolka, Michael N. Walter, Henrik Whelan, Robert Mackey, Scott Schumann, Gunter Garavan, Hugh Transl Psychiatry Article While there is substantial evidence that cannabis use is associated with differences in human brain development, most of this evidence is correlational in nature. Bayesian causal network (BCN) modeling attempts to identify probable causal relationships in correlational data using conditional probabilities to estimate directional associations between a set of interrelated variables. In this study, we employed BCN modeling in 637 adolescents from the IMAGEN study who were cannabis naïve at age 14 to provide evidence that the accelerated prefrontal cortical thinning found previously in adolescent cannabis users by Albaugh et al. [1] is a result of cannabis use causally affecting neurodevelopment. BCNs incorporated data on cannabis use, prefrontal cortical thickness, and other factors related to both brain development and cannabis use, including demographics, psychopathology, childhood adversity, and other substance use. All BCN algorithms strongly suggested a directional relationship from adolescent cannabis use to accelerated cortical thinning. While BCN modeling alone does not prove a causal relationship, these results are consistent with a body of animal and human research suggesting that adolescent cannabis use adversely affects brain development. Nature Publishing Group UK 2022-05-06 /pmc/articles/PMC9076659/ /pubmed/35523763 http://dx.doi.org/10.1038/s41398-022-01956-4 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Owens, Max M. Albaugh, Matthew D. Allgaier, Nicholas Yuan, Dekang Robert, Gabriel Cupertino, Renata B. Spechler, Philip A. Juliano, Anthony Hahn, Sage Banaschewski, Tobias Bokde, Arun L. W. Desrivières, Sylvane Flor, Herta Grigis, Antoine Gowland, Penny Heinz, Andreas Brühl, Rüdiger Martinot, Jean-Luc Martinot, Marie-Laure Paillère Artiges, Eric Nees, Frauke Orfanos, Dimitri Papadopoulos Lemaitre, Herve Paus, Tomáš Poustka, Luise Millenet, Sabina Fröhner, Juliane H. Smolka, Michael N. Walter, Henrik Whelan, Robert Mackey, Scott Schumann, Gunter Garavan, Hugh Bayesian causal network modeling suggests adolescent cannabis use accelerates prefrontal cortical thinning |
title | Bayesian causal network modeling suggests adolescent cannabis use accelerates prefrontal cortical thinning |
title_full | Bayesian causal network modeling suggests adolescent cannabis use accelerates prefrontal cortical thinning |
title_fullStr | Bayesian causal network modeling suggests adolescent cannabis use accelerates prefrontal cortical thinning |
title_full_unstemmed | Bayesian causal network modeling suggests adolescent cannabis use accelerates prefrontal cortical thinning |
title_short | Bayesian causal network modeling suggests adolescent cannabis use accelerates prefrontal cortical thinning |
title_sort | bayesian causal network modeling suggests adolescent cannabis use accelerates prefrontal cortical thinning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076659/ https://www.ncbi.nlm.nih.gov/pubmed/35523763 http://dx.doi.org/10.1038/s41398-022-01956-4 |
work_keys_str_mv | AT owensmaxm bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT albaughmatthewd bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT allgaiernicholas bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT yuandekang bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT robertgabriel bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT cupertinorenatab bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT spechlerphilipa bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT julianoanthony bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT hahnsage bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT banaschewskitobias bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT bokdearunlw bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT desrivieressylvane bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT florherta bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT grigisantoine bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT gowlandpenny bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT heinzandreas bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT bruhlrudiger bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT martinotjeanluc bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT martinotmarielaurepaillere bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT artigeseric bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT neesfrauke bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT orfanosdimitripapadopoulos bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT lemaitreherve bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT paustomas bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT poustkaluise bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT millenetsabina bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT frohnerjulianeh bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT smolkamichaeln bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT walterhenrik bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT whelanrobert bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT mackeyscott bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT schumanngunter bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT garavanhugh bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning AT bayesiancausalnetworkmodelingsuggestsadolescentcannabisuseacceleratesprefrontalcorticalthinning |