Cargando…
Thermal activation of charge carriers in ionic and electronic semiconductor β-Ag(I)V(V)O(3) and β-Ag(I)V(V)O(3)@V(V)(1.6)V(IV)(0.4)O(4.8) composite xerogels
Silver vanadium oxide (SVO) and Silver Vanadium Oxide/Vanadium Oxide (SVO@VO) composite hydrogels are formed from the self-entanglement of β-AgVO(3) nanoribbons and slightly reduced vanadium oxide (VO) (V(V)(1.6)V(IV)(0.4)O(4.8)) nanoribbons; respectively. Starting from randomly distributed nanoribb...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076673/ https://www.ncbi.nlm.nih.gov/pubmed/35542870 http://dx.doi.org/10.1039/c9ra04227j |
_version_ | 1784701979250917376 |
---|---|
author | Fernández de Luis, Roberto Larrea, Edurne S. Orive, Joseba Lezama, Luis Costa, C. M. Lanceros-Méndez, S. Arriortua, María I. |
author_facet | Fernández de Luis, Roberto Larrea, Edurne S. Orive, Joseba Lezama, Luis Costa, C. M. Lanceros-Méndez, S. Arriortua, María I. |
author_sort | Fernández de Luis, Roberto |
collection | PubMed |
description | Silver vanadium oxide (SVO) and Silver Vanadium Oxide/Vanadium Oxide (SVO@VO) composite hydrogels are formed from the self-entanglement of β-AgVO(3) nanoribbons and slightly reduced vanadium oxide (VO) (V(V)(1.6)V(IV)(0.4)O(4.8)) nanoribbons; respectively. Starting from randomly distributed nanoribbons within hydrogels, and after a controlled drying process, a homogeneous xerogel system containing tuneable SVO : VO ratios from 1 : 0 to 1 : 1 can be obtained. The precise nanoribbons compositional control of these composite system can serve as a tool to tune the electrical properties of the xerogels, as it has been demonstrated in this work by impedance spectroscopy (IS) experiments. Indeed, depending on the composition and temperature conditions, composite xerogels can behave as electronic, protonic or high temperature ionic conductors. In addition, the electric and protonic conductivity of the composite xerogels can be enhanced (until a critical irreversible point), through the temperature triggered charge carrier creation. As concluded from thermogravimetry, IR, UV-Vis and EPR spectroscopy studies, besides the SVO : VO ratio, the thermal induced oxidation/reduction of V(5+) to V(4+), and thermally triggered release of strongly bonded water molecules at the nanoribbon surface are the two key variables that control the electric and ionic conduction processes within the SVO and composite SVO/VO xerogels. |
format | Online Article Text |
id | pubmed-9076673 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90766732022-05-09 Thermal activation of charge carriers in ionic and electronic semiconductor β-Ag(I)V(V)O(3) and β-Ag(I)V(V)O(3)@V(V)(1.6)V(IV)(0.4)O(4.8) composite xerogels Fernández de Luis, Roberto Larrea, Edurne S. Orive, Joseba Lezama, Luis Costa, C. M. Lanceros-Méndez, S. Arriortua, María I. RSC Adv Chemistry Silver vanadium oxide (SVO) and Silver Vanadium Oxide/Vanadium Oxide (SVO@VO) composite hydrogels are formed from the self-entanglement of β-AgVO(3) nanoribbons and slightly reduced vanadium oxide (VO) (V(V)(1.6)V(IV)(0.4)O(4.8)) nanoribbons; respectively. Starting from randomly distributed nanoribbons within hydrogels, and after a controlled drying process, a homogeneous xerogel system containing tuneable SVO : VO ratios from 1 : 0 to 1 : 1 can be obtained. The precise nanoribbons compositional control of these composite system can serve as a tool to tune the electrical properties of the xerogels, as it has been demonstrated in this work by impedance spectroscopy (IS) experiments. Indeed, depending on the composition and temperature conditions, composite xerogels can behave as electronic, protonic or high temperature ionic conductors. In addition, the electric and protonic conductivity of the composite xerogels can be enhanced (until a critical irreversible point), through the temperature triggered charge carrier creation. As concluded from thermogravimetry, IR, UV-Vis and EPR spectroscopy studies, besides the SVO : VO ratio, the thermal induced oxidation/reduction of V(5+) to V(4+), and thermally triggered release of strongly bonded water molecules at the nanoribbon surface are the two key variables that control the electric and ionic conduction processes within the SVO and composite SVO/VO xerogels. The Royal Society of Chemistry 2019-12-20 /pmc/articles/PMC9076673/ /pubmed/35542870 http://dx.doi.org/10.1039/c9ra04227j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Fernández de Luis, Roberto Larrea, Edurne S. Orive, Joseba Lezama, Luis Costa, C. M. Lanceros-Méndez, S. Arriortua, María I. Thermal activation of charge carriers in ionic and electronic semiconductor β-Ag(I)V(V)O(3) and β-Ag(I)V(V)O(3)@V(V)(1.6)V(IV)(0.4)O(4.8) composite xerogels |
title | Thermal activation of charge carriers in ionic and electronic semiconductor β-Ag(I)V(V)O(3) and β-Ag(I)V(V)O(3)@V(V)(1.6)V(IV)(0.4)O(4.8) composite xerogels |
title_full | Thermal activation of charge carriers in ionic and electronic semiconductor β-Ag(I)V(V)O(3) and β-Ag(I)V(V)O(3)@V(V)(1.6)V(IV)(0.4)O(4.8) composite xerogels |
title_fullStr | Thermal activation of charge carriers in ionic and electronic semiconductor β-Ag(I)V(V)O(3) and β-Ag(I)V(V)O(3)@V(V)(1.6)V(IV)(0.4)O(4.8) composite xerogels |
title_full_unstemmed | Thermal activation of charge carriers in ionic and electronic semiconductor β-Ag(I)V(V)O(3) and β-Ag(I)V(V)O(3)@V(V)(1.6)V(IV)(0.4)O(4.8) composite xerogels |
title_short | Thermal activation of charge carriers in ionic and electronic semiconductor β-Ag(I)V(V)O(3) and β-Ag(I)V(V)O(3)@V(V)(1.6)V(IV)(0.4)O(4.8) composite xerogels |
title_sort | thermal activation of charge carriers in ionic and electronic semiconductor β-ag(i)v(v)o(3) and β-ag(i)v(v)o(3)@v(v)(1.6)v(iv)(0.4)o(4.8) composite xerogels |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076673/ https://www.ncbi.nlm.nih.gov/pubmed/35542870 http://dx.doi.org/10.1039/c9ra04227j |
work_keys_str_mv | AT fernandezdeluisroberto thermalactivationofchargecarriersinionicandelectronicsemiconductorbagivvo3andbagivvo3vv16viv04o48compositexerogels AT larreaedurnes thermalactivationofchargecarriersinionicandelectronicsemiconductorbagivvo3andbagivvo3vv16viv04o48compositexerogels AT orivejoseba thermalactivationofchargecarriersinionicandelectronicsemiconductorbagivvo3andbagivvo3vv16viv04o48compositexerogels AT lezamaluis thermalactivationofchargecarriersinionicandelectronicsemiconductorbagivvo3andbagivvo3vv16viv04o48compositexerogels AT costacm thermalactivationofchargecarriersinionicandelectronicsemiconductorbagivvo3andbagivvo3vv16viv04o48compositexerogels AT lancerosmendezs thermalactivationofchargecarriersinionicandelectronicsemiconductorbagivvo3andbagivvo3vv16viv04o48compositexerogels AT arriortuamariai thermalactivationofchargecarriersinionicandelectronicsemiconductorbagivvo3andbagivvo3vv16viv04o48compositexerogels |