Cargando…

Thermal activation of charge carriers in ionic and electronic semiconductor β-Ag(I)V(V)O(3) and β-Ag(I)V(V)O(3)@V(V)(1.6)V(IV)(0.4)O(4.8) composite xerogels

Silver vanadium oxide (SVO) and Silver Vanadium Oxide/Vanadium Oxide (SVO@VO) composite hydrogels are formed from the self-entanglement of β-AgVO(3) nanoribbons and slightly reduced vanadium oxide (VO) (V(V)(1.6)V(IV)(0.4)O(4.8)) nanoribbons; respectively. Starting from randomly distributed nanoribb...

Descripción completa

Detalles Bibliográficos
Autores principales: Fernández de Luis, Roberto, Larrea, Edurne S., Orive, Joseba, Lezama, Luis, Costa, C. M., Lanceros-Méndez, S., Arriortua, María I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076673/
https://www.ncbi.nlm.nih.gov/pubmed/35542870
http://dx.doi.org/10.1039/c9ra04227j
_version_ 1784701979250917376
author Fernández de Luis, Roberto
Larrea, Edurne S.
Orive, Joseba
Lezama, Luis
Costa, C. M.
Lanceros-Méndez, S.
Arriortua, María I.
author_facet Fernández de Luis, Roberto
Larrea, Edurne S.
Orive, Joseba
Lezama, Luis
Costa, C. M.
Lanceros-Méndez, S.
Arriortua, María I.
author_sort Fernández de Luis, Roberto
collection PubMed
description Silver vanadium oxide (SVO) and Silver Vanadium Oxide/Vanadium Oxide (SVO@VO) composite hydrogels are formed from the self-entanglement of β-AgVO(3) nanoribbons and slightly reduced vanadium oxide (VO) (V(V)(1.6)V(IV)(0.4)O(4.8)) nanoribbons; respectively. Starting from randomly distributed nanoribbons within hydrogels, and after a controlled drying process, a homogeneous xerogel system containing tuneable SVO : VO ratios from 1 : 0 to 1 : 1 can be obtained. The precise nanoribbons compositional control of these composite system can serve as a tool to tune the electrical properties of the xerogels, as it has been demonstrated in this work by impedance spectroscopy (IS) experiments. Indeed, depending on the composition and temperature conditions, composite xerogels can behave as electronic, protonic or high temperature ionic conductors. In addition, the electric and protonic conductivity of the composite xerogels can be enhanced (until a critical irreversible point), through the temperature triggered charge carrier creation. As concluded from thermogravimetry, IR, UV-Vis and EPR spectroscopy studies, besides the SVO : VO ratio, the thermal induced oxidation/reduction of V(5+) to V(4+), and thermally triggered release of strongly bonded water molecules at the nanoribbon surface are the two key variables that control the electric and ionic conduction processes within the SVO and composite SVO/VO xerogels.
format Online
Article
Text
id pubmed-9076673
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90766732022-05-09 Thermal activation of charge carriers in ionic and electronic semiconductor β-Ag(I)V(V)O(3) and β-Ag(I)V(V)O(3)@V(V)(1.6)V(IV)(0.4)O(4.8) composite xerogels Fernández de Luis, Roberto Larrea, Edurne S. Orive, Joseba Lezama, Luis Costa, C. M. Lanceros-Méndez, S. Arriortua, María I. RSC Adv Chemistry Silver vanadium oxide (SVO) and Silver Vanadium Oxide/Vanadium Oxide (SVO@VO) composite hydrogels are formed from the self-entanglement of β-AgVO(3) nanoribbons and slightly reduced vanadium oxide (VO) (V(V)(1.6)V(IV)(0.4)O(4.8)) nanoribbons; respectively. Starting from randomly distributed nanoribbons within hydrogels, and after a controlled drying process, a homogeneous xerogel system containing tuneable SVO : VO ratios from 1 : 0 to 1 : 1 can be obtained. The precise nanoribbons compositional control of these composite system can serve as a tool to tune the electrical properties of the xerogels, as it has been demonstrated in this work by impedance spectroscopy (IS) experiments. Indeed, depending on the composition and temperature conditions, composite xerogels can behave as electronic, protonic or high temperature ionic conductors. In addition, the electric and protonic conductivity of the composite xerogels can be enhanced (until a critical irreversible point), through the temperature triggered charge carrier creation. As concluded from thermogravimetry, IR, UV-Vis and EPR spectroscopy studies, besides the SVO : VO ratio, the thermal induced oxidation/reduction of V(5+) to V(4+), and thermally triggered release of strongly bonded water molecules at the nanoribbon surface are the two key variables that control the electric and ionic conduction processes within the SVO and composite SVO/VO xerogels. The Royal Society of Chemistry 2019-12-20 /pmc/articles/PMC9076673/ /pubmed/35542870 http://dx.doi.org/10.1039/c9ra04227j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Fernández de Luis, Roberto
Larrea, Edurne S.
Orive, Joseba
Lezama, Luis
Costa, C. M.
Lanceros-Méndez, S.
Arriortua, María I.
Thermal activation of charge carriers in ionic and electronic semiconductor β-Ag(I)V(V)O(3) and β-Ag(I)V(V)O(3)@V(V)(1.6)V(IV)(0.4)O(4.8) composite xerogels
title Thermal activation of charge carriers in ionic and electronic semiconductor β-Ag(I)V(V)O(3) and β-Ag(I)V(V)O(3)@V(V)(1.6)V(IV)(0.4)O(4.8) composite xerogels
title_full Thermal activation of charge carriers in ionic and electronic semiconductor β-Ag(I)V(V)O(3) and β-Ag(I)V(V)O(3)@V(V)(1.6)V(IV)(0.4)O(4.8) composite xerogels
title_fullStr Thermal activation of charge carriers in ionic and electronic semiconductor β-Ag(I)V(V)O(3) and β-Ag(I)V(V)O(3)@V(V)(1.6)V(IV)(0.4)O(4.8) composite xerogels
title_full_unstemmed Thermal activation of charge carriers in ionic and electronic semiconductor β-Ag(I)V(V)O(3) and β-Ag(I)V(V)O(3)@V(V)(1.6)V(IV)(0.4)O(4.8) composite xerogels
title_short Thermal activation of charge carriers in ionic and electronic semiconductor β-Ag(I)V(V)O(3) and β-Ag(I)V(V)O(3)@V(V)(1.6)V(IV)(0.4)O(4.8) composite xerogels
title_sort thermal activation of charge carriers in ionic and electronic semiconductor β-ag(i)v(v)o(3) and β-ag(i)v(v)o(3)@v(v)(1.6)v(iv)(0.4)o(4.8) composite xerogels
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076673/
https://www.ncbi.nlm.nih.gov/pubmed/35542870
http://dx.doi.org/10.1039/c9ra04227j
work_keys_str_mv AT fernandezdeluisroberto thermalactivationofchargecarriersinionicandelectronicsemiconductorbagivvo3andbagivvo3vv16viv04o48compositexerogels
AT larreaedurnes thermalactivationofchargecarriersinionicandelectronicsemiconductorbagivvo3andbagivvo3vv16viv04o48compositexerogels
AT orivejoseba thermalactivationofchargecarriersinionicandelectronicsemiconductorbagivvo3andbagivvo3vv16viv04o48compositexerogels
AT lezamaluis thermalactivationofchargecarriersinionicandelectronicsemiconductorbagivvo3andbagivvo3vv16viv04o48compositexerogels
AT costacm thermalactivationofchargecarriersinionicandelectronicsemiconductorbagivvo3andbagivvo3vv16viv04o48compositexerogels
AT lancerosmendezs thermalactivationofchargecarriersinionicandelectronicsemiconductorbagivvo3andbagivvo3vv16viv04o48compositexerogels
AT arriortuamariai thermalactivationofchargecarriersinionicandelectronicsemiconductorbagivvo3andbagivvo3vv16viv04o48compositexerogels