Cargando…
A text-based computational framework for patient -specific modeling for classification of cancers
Patient heterogeneity precludes cancer treatment and drug development; hence, development of methods for finding prognostic markers for individual treatment is urgently required. Here, we present Pasmopy (Patient-Specific Modeling in Python), a computational framework for stratification of patients...
Autores principales: | Imoto, Hiroaki, Yamashiro, Sawa, Okada, Mariko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076893/ https://www.ncbi.nlm.nih.gov/pubmed/35535207 http://dx.doi.org/10.1016/j.isci.2022.103944 |
Ejemplares similares
-
Protocol for stratification of triple-negative breast cancer patients using in silico signaling dynamics
por: Imoto, Hiroaki, et al.
Publicado: (2022) -
A Computational Framework for Prediction and Analysis of Cancer Signaling Dynamics from RNA Sequencing Data—Application to the ErbB Receptor Signaling Pathway
por: Imoto, Hiroaki, et al.
Publicado: (2020) -
Computational text analysis and reading comprehension exam complexity: towards automatic text classification
por: Liontou, Trisevgeni
Publicado: (2014) -
Feature-enhanced text-inception model for Chinese long text classification
por: Yang, Guo, et al.
Publicado: (2023) -
Sentimental text mining based on an additional features method for text classification
por: Cheng, Ching-Hsue, et al.
Publicado: (2019)