Cargando…

Spatial distribution and identification of potential risk regions to rice blast disease in different rice ecosystems of Karnataka

Rice is a globally important crop and highly vulnerable to rice blast disease (RBD). We studied the spatial distribution of RBD by considering the 2-year exploratory data from 120 sampling sites over varied rice ecosystems of Karnataka, India. Point pattern and surface interpolation analyses were pe...

Descripción completa

Detalles Bibliográficos
Autores principales: Amoghavarsha, Chittaragi, Pramesh, Devanna, Sridhara, Shankarappa, Patil, Balanagouda, Shil, Sandip, Naik, Ganesha R., Naik, Manjunath K., Shokralla, Shadi, El-Sabrout, Ahmed M., Mahmoud, Eman A., Elansary, Hosam O., Nayak, Anusha, Prasannakumar, Muthukapalli K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076900/
https://www.ncbi.nlm.nih.gov/pubmed/35523840
http://dx.doi.org/10.1038/s41598-022-11453-9
Descripción
Sumario:Rice is a globally important crop and highly vulnerable to rice blast disease (RBD). We studied the spatial distribution of RBD by considering the 2-year exploratory data from 120 sampling sites over varied rice ecosystems of Karnataka, India. Point pattern and surface interpolation analyses were performed to identify the spatial distribution of RBD. The spatial clusters of RBD were generated by spatial autocorrelation and Ripley’s K function. Further, inverse distance weighting (IDW), ordinary kriging (OK), and indicator kriging (IK) approaches were utilized to generate spatial maps by predicting the values at unvisited locations using neighboring observations. Hierarchical cluster analysis using the average linkage method identified two main clusters of RBD severity. From the Local Moran’s I, most of the districts were clustered together (at I > 0), except the coastal and interior districts (at I < 0). Positive spatial dependency was observed in the Coastal, Hilly, Bhadra, and Upper Krishna Project ecosystems (p > 0.05), while Tungabhadra and Kaveri ecosystem districts were clustered together at p < 0.05. From the kriging, Hilly ecosystem, middle and southern parts of Karnataka were found vulnerable to RBD. This is the first intensive study in India on understanding the spatial distribution of RBD using geostatistical approaches, and the findings from this study help in setting up ecosystem-specific management strategies against RBD.