Cargando…
Comparative study on La-promoted Ni/γ-Al(2)O(3) for methane dry reforming – spray drying for enhanced nickel dispersion and strong metal–support interactions
Dry reforming of methane (DRM) enables an efficient utilization of two abundant greenhouse gases by converting them into syngas, a versatile feedstock for chemical synthesis. Aiming for high catalyst performance and enhanced coke resistance, different preparation techniques of La-promoted Ni/γ-Al(2)...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076903/ https://www.ncbi.nlm.nih.gov/pubmed/35538961 http://dx.doi.org/10.1039/c7ra06570a |
_version_ | 1784702028474220544 |
---|---|
author | Pegios, N. Bliznuk, V. Prünte, S. Schneider, J. M. Palkovits, R. Simeonov, K. |
author_facet | Pegios, N. Bliznuk, V. Prünte, S. Schneider, J. M. Palkovits, R. Simeonov, K. |
author_sort | Pegios, N. |
collection | PubMed |
description | Dry reforming of methane (DRM) enables an efficient utilization of two abundant greenhouse gases by converting them into syngas, a versatile feedstock for chemical synthesis. Aiming for high catalyst performance and enhanced coke resistance, different preparation techniques of La-promoted Ni/γ-Al(2)O(3) catalysts for DRM were compared facilitating structure–performance correlations. The studied synthesis techniques comprehend incipient wetness impregnation and co-precipitation as well as alternative techniques such as spray drying. All catalysts were fully characterized before and after reaction by N(2)-physisorption, XRD, H(2)-TPR and STEM-EDX elemental mapping. Additionally, a thorough investigation of carbon deposits has been carried out by TGA/DSC and STEM-EDX, respectively. The different preparation techniques led generally to very different physical properties, structure, chemical species and anti-coking properties of the catalyst. However, some catalysts with similar physicochemical characteristics differed in catalytic performance and coking resistance. Superior catalytic performance could be reached for catalysts prepared by spray drying and related to excellent Ni dispersion, strong metal–support interaction and very low coke formation of only 2.7% of the catalyst weight. After 6 h time on stream only minor sintering occurred, with few Ni nanoparticles up to 10 nm. |
format | Online Article Text |
id | pubmed-9076903 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90769032022-05-09 Comparative study on La-promoted Ni/γ-Al(2)O(3) for methane dry reforming – spray drying for enhanced nickel dispersion and strong metal–support interactions Pegios, N. Bliznuk, V. Prünte, S. Schneider, J. M. Palkovits, R. Simeonov, K. RSC Adv Chemistry Dry reforming of methane (DRM) enables an efficient utilization of two abundant greenhouse gases by converting them into syngas, a versatile feedstock for chemical synthesis. Aiming for high catalyst performance and enhanced coke resistance, different preparation techniques of La-promoted Ni/γ-Al(2)O(3) catalysts for DRM were compared facilitating structure–performance correlations. The studied synthesis techniques comprehend incipient wetness impregnation and co-precipitation as well as alternative techniques such as spray drying. All catalysts were fully characterized before and after reaction by N(2)-physisorption, XRD, H(2)-TPR and STEM-EDX elemental mapping. Additionally, a thorough investigation of carbon deposits has been carried out by TGA/DSC and STEM-EDX, respectively. The different preparation techniques led generally to very different physical properties, structure, chemical species and anti-coking properties of the catalyst. However, some catalysts with similar physicochemical characteristics differed in catalytic performance and coking resistance. Superior catalytic performance could be reached for catalysts prepared by spray drying and related to excellent Ni dispersion, strong metal–support interaction and very low coke formation of only 2.7% of the catalyst weight. After 6 h time on stream only minor sintering occurred, with few Ni nanoparticles up to 10 nm. The Royal Society of Chemistry 2018-01-02 /pmc/articles/PMC9076903/ /pubmed/35538961 http://dx.doi.org/10.1039/c7ra06570a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Pegios, N. Bliznuk, V. Prünte, S. Schneider, J. M. Palkovits, R. Simeonov, K. Comparative study on La-promoted Ni/γ-Al(2)O(3) for methane dry reforming – spray drying for enhanced nickel dispersion and strong metal–support interactions |
title | Comparative study on La-promoted Ni/γ-Al(2)O(3) for methane dry reforming – spray drying for enhanced nickel dispersion and strong metal–support interactions |
title_full | Comparative study on La-promoted Ni/γ-Al(2)O(3) for methane dry reforming – spray drying for enhanced nickel dispersion and strong metal–support interactions |
title_fullStr | Comparative study on La-promoted Ni/γ-Al(2)O(3) for methane dry reforming – spray drying for enhanced nickel dispersion and strong metal–support interactions |
title_full_unstemmed | Comparative study on La-promoted Ni/γ-Al(2)O(3) for methane dry reforming – spray drying for enhanced nickel dispersion and strong metal–support interactions |
title_short | Comparative study on La-promoted Ni/γ-Al(2)O(3) for methane dry reforming – spray drying for enhanced nickel dispersion and strong metal–support interactions |
title_sort | comparative study on la-promoted ni/γ-al(2)o(3) for methane dry reforming – spray drying for enhanced nickel dispersion and strong metal–support interactions |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076903/ https://www.ncbi.nlm.nih.gov/pubmed/35538961 http://dx.doi.org/10.1039/c7ra06570a |
work_keys_str_mv | AT pegiosn comparativestudyonlapromotednigal2o3formethanedryreformingspraydryingforenhancednickeldispersionandstrongmetalsupportinteractions AT bliznukv comparativestudyonlapromotednigal2o3formethanedryreformingspraydryingforenhancednickeldispersionandstrongmetalsupportinteractions AT pruntes comparativestudyonlapromotednigal2o3formethanedryreformingspraydryingforenhancednickeldispersionandstrongmetalsupportinteractions AT schneiderjm comparativestudyonlapromotednigal2o3formethanedryreformingspraydryingforenhancednickeldispersionandstrongmetalsupportinteractions AT palkovitsr comparativestudyonlapromotednigal2o3formethanedryreformingspraydryingforenhancednickeldispersionandstrongmetalsupportinteractions AT simeonovk comparativestudyonlapromotednigal2o3formethanedryreformingspraydryingforenhancednickeldispersionandstrongmetalsupportinteractions |