Cargando…

Controlled synthesis of Cu nanoparticle arrays with surface enhanced Raman scattering effect performance

Herein, we report the synthesis of a 350 nm Cu nanoparticle array with different period combinations by a method based on a monolayer and have further investigated its surface-enhanced Raman scattering (SERS) properties experimentally. The SERS properties of the 350 nm Cu nanoparticle array were inv...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Qianqian, Hang, Lifeng, Ma, Liang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9077090/
https://www.ncbi.nlm.nih.gov/pubmed/35542628
http://dx.doi.org/10.1039/c7ra10694g
Descripción
Sumario:Herein, we report the synthesis of a 350 nm Cu nanoparticle array with different period combinations by a method based on a monolayer and have further investigated its surface-enhanced Raman scattering (SERS) properties experimentally. The SERS properties of the 350 nm Cu nanoparticle array were investigated, and the influence of the thickness of the Cu nanoshell was studied. The results demonstrated that the 18 min ion-sputtering deposition can improve the SERS activity in addition to good stability. This study can provide an optimized method for some inexpensive nanomaterials as highly active SERS substrates and a good solution to the interference caused by substrate impurity.