Cargando…

A review on the limitations of natural fibres and natural fibre composites with emphasis on tensile strength using coir as a case study

Natural fibres such as coir, jute, flax, and hemp have been considered for technical applications. These fibres, though with some desirable qualities such as low density and environmental compatibility, possess the common property of non-uniformity along their length and, as a result, variable diame...

Descripción completa

Detalles Bibliográficos
Autores principales: Madueke, Chioma Ifeyinwa, Mbah, Oguejiofor Miracle, Umunakwe, Reginald
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9077356/
https://www.ncbi.nlm.nih.gov/pubmed/35574237
http://dx.doi.org/10.1007/s00289-022-04241-y
Descripción
Sumario:Natural fibres such as coir, jute, flax, and hemp have been considered for technical applications. These fibres, though with some desirable qualities such as low density and environmental compatibility, possess the common property of non-uniformity along their length and, as a result, variable diameter and variable cross-sectional area. Several other factors, such as gauge length, fibre species and origin, strain rate, method of extraction of the fibres, porosity and pore size distribution, have been identified to influence the tensile strength of natural fibres and limit their applications in composites. Besides, several authors have used different diameters for the same type of natural fibre, such as coir, resulting in significant inconsistency in the tensile properties. For the same type of coir fibre, and from tensile strength reports from ten authors, an average tensile strength of 120.97 ± 42.30 MPa was obtained. The average number of fibres used in most cases for the tensile test was less than the requirement for natural fibres. All these factors were addressed with the aim of improving the overall properties of natural fibres and their composites.