Cargando…
Predicting missing proteomics values using machine learning: Filling the gap using transcriptomics and other biological features
Proteins are often considered the main biological element in charge of the different functions and structures of a cell. However, proteomics, the global study of all expressed proteins, often performed by mass spectrometry, is limited by its stochastic sampling and can only quantify a limited amount...
Autores principales: | Ochoteco Asensio, Juan, Verheijen, Marcha, Caiment, Florian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9077535/ https://www.ncbi.nlm.nih.gov/pubmed/35601960 http://dx.doi.org/10.1016/j.csbj.2022.04.017 |
Ejemplares similares
-
FuSe: a tool to move RNA-Seq analyses from chromosomal/gene loci to functional grouping of mRNA transcripts
por: Gupta, Rajinder, et al.
Publicado: (2020) -
Multi-omics HeCaToS dataset of repeated dose toxicity for cardiotoxic & hepatotoxic compounds
por: Verheijen, Marcha, et al.
Publicado: (2022) -
Filling the gap in functional trait databases: use of ecological hypotheses to replace missing data
por: Taugourdeau, Simon, et al.
Publicado: (2014) -
Missing domesticated plant forms: can artificial selection fill the gap?
por: Van Tassel, David L, et al.
Publicado: (2010) -
Identifying novel transcript biomarkers for hepatocellular carcinoma (HCC) using RNA-Seq datasets and machine learning
por: Gupta, Rajinder, et al.
Publicado: (2021)