Cargando…

Atmospheric-pressure-plasma-jet processed carbon nanotube (CNT)–reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitors

This study evaluates DC-pulse nitrogen atmospheric-pressure-plasma-jet processed carbon nanotube (CNT)–reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitor applications. X-ray photoelectron spectroscopy (XPS) indicates decreased oxygen content (mainly, C–O bonding content)...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuok, Fei-Hong, Chien, Hung-Hua, Lee, Chia-Chun, Hao, Yu-Chuan, Yu, Ing-Song, Hsu, Cheng-Che, Cheng, I-Chun, Chen, Jian-Zhang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9077538/
https://www.ncbi.nlm.nih.gov/pubmed/35541196
http://dx.doi.org/10.1039/c7ra12108c
_version_ 1784702138801192960
author Kuok, Fei-Hong
Chien, Hung-Hua
Lee, Chia-Chun
Hao, Yu-Chuan
Yu, Ing-Song
Hsu, Cheng-Che
Cheng, I-Chun
Chen, Jian-Zhang
author_facet Kuok, Fei-Hong
Chien, Hung-Hua
Lee, Chia-Chun
Hao, Yu-Chuan
Yu, Ing-Song
Hsu, Cheng-Che
Cheng, I-Chun
Chen, Jian-Zhang
author_sort Kuok, Fei-Hong
collection PubMed
description This study evaluates DC-pulse nitrogen atmospheric-pressure-plasma-jet processed carbon nanotube (CNT)–reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitor applications. X-ray photoelectron spectroscopy (XPS) indicates decreased oxygen content (mainly, C–O bonding content) after nitrogen APPJ processing owing to the oxidation and vaporization of ethyl cellulose. Nitrogen APPJ processing introduces nitrogen doping and improves the hydrophilicity of the CNT–rGO nanocomposites. Raman analysis indicates that nitrogen APPJ processing introduces defects and/or surface functional groups on the nanocomposites. The processed CNT–rGO nanocomposites on carbon cloth are applied to the electrodes of H(2)SO(4)–polyvinyl alcohol (PVA) gel-electrolyte supercapacitors. The best achieved specific (areal) capacitance is 93.1 F g(−1) (9.1 mF cm(−2)) with 15 s APPJ-processed CNT–rGO nanocomposite electrodes, as evaluated by cyclic voltammetry under a potential scan rate of 2 mV s(−1). The addition of rGOs in CNTs in the nanoporous electrodes improves the supercapacitor performance.
format Online
Article
Text
id pubmed-9077538
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90775382022-05-09 Atmospheric-pressure-plasma-jet processed carbon nanotube (CNT)–reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitors Kuok, Fei-Hong Chien, Hung-Hua Lee, Chia-Chun Hao, Yu-Chuan Yu, Ing-Song Hsu, Cheng-Che Cheng, I-Chun Chen, Jian-Zhang RSC Adv Chemistry This study evaluates DC-pulse nitrogen atmospheric-pressure-plasma-jet processed carbon nanotube (CNT)–reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitor applications. X-ray photoelectron spectroscopy (XPS) indicates decreased oxygen content (mainly, C–O bonding content) after nitrogen APPJ processing owing to the oxidation and vaporization of ethyl cellulose. Nitrogen APPJ processing introduces nitrogen doping and improves the hydrophilicity of the CNT–rGO nanocomposites. Raman analysis indicates that nitrogen APPJ processing introduces defects and/or surface functional groups on the nanocomposites. The processed CNT–rGO nanocomposites on carbon cloth are applied to the electrodes of H(2)SO(4)–polyvinyl alcohol (PVA) gel-electrolyte supercapacitors. The best achieved specific (areal) capacitance is 93.1 F g(−1) (9.1 mF cm(−2)) with 15 s APPJ-processed CNT–rGO nanocomposite electrodes, as evaluated by cyclic voltammetry under a potential scan rate of 2 mV s(−1). The addition of rGOs in CNTs in the nanoporous electrodes improves the supercapacitor performance. The Royal Society of Chemistry 2018-01-12 /pmc/articles/PMC9077538/ /pubmed/35541196 http://dx.doi.org/10.1039/c7ra12108c Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Kuok, Fei-Hong
Chien, Hung-Hua
Lee, Chia-Chun
Hao, Yu-Chuan
Yu, Ing-Song
Hsu, Cheng-Che
Cheng, I-Chun
Chen, Jian-Zhang
Atmospheric-pressure-plasma-jet processed carbon nanotube (CNT)–reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitors
title Atmospheric-pressure-plasma-jet processed carbon nanotube (CNT)–reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitors
title_full Atmospheric-pressure-plasma-jet processed carbon nanotube (CNT)–reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitors
title_fullStr Atmospheric-pressure-plasma-jet processed carbon nanotube (CNT)–reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitors
title_full_unstemmed Atmospheric-pressure-plasma-jet processed carbon nanotube (CNT)–reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitors
title_short Atmospheric-pressure-plasma-jet processed carbon nanotube (CNT)–reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitors
title_sort atmospheric-pressure-plasma-jet processed carbon nanotube (cnt)–reduced graphene oxide (rgo) nanocomposites for gel-electrolyte supercapacitors
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9077538/
https://www.ncbi.nlm.nih.gov/pubmed/35541196
http://dx.doi.org/10.1039/c7ra12108c
work_keys_str_mv AT kuokfeihong atmosphericpressureplasmajetprocessedcarbonnanotubecntreducedgrapheneoxidergonanocompositesforgelelectrolytesupercapacitors
AT chienhunghua atmosphericpressureplasmajetprocessedcarbonnanotubecntreducedgrapheneoxidergonanocompositesforgelelectrolytesupercapacitors
AT leechiachun atmosphericpressureplasmajetprocessedcarbonnanotubecntreducedgrapheneoxidergonanocompositesforgelelectrolytesupercapacitors
AT haoyuchuan atmosphericpressureplasmajetprocessedcarbonnanotubecntreducedgrapheneoxidergonanocompositesforgelelectrolytesupercapacitors
AT yuingsong atmosphericpressureplasmajetprocessedcarbonnanotubecntreducedgrapheneoxidergonanocompositesforgelelectrolytesupercapacitors
AT hsuchengche atmosphericpressureplasmajetprocessedcarbonnanotubecntreducedgrapheneoxidergonanocompositesforgelelectrolytesupercapacitors
AT chengichun atmosphericpressureplasmajetprocessedcarbonnanotubecntreducedgrapheneoxidergonanocompositesforgelelectrolytesupercapacitors
AT chenjianzhang atmosphericpressureplasmajetprocessedcarbonnanotubecntreducedgrapheneoxidergonanocompositesforgelelectrolytesupercapacitors