Cargando…
Atmospheric-pressure-plasma-jet processed carbon nanotube (CNT)–reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitors
This study evaluates DC-pulse nitrogen atmospheric-pressure-plasma-jet processed carbon nanotube (CNT)–reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitor applications. X-ray photoelectron spectroscopy (XPS) indicates decreased oxygen content (mainly, C–O bonding content)...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9077538/ https://www.ncbi.nlm.nih.gov/pubmed/35541196 http://dx.doi.org/10.1039/c7ra12108c |
_version_ | 1784702138801192960 |
---|---|
author | Kuok, Fei-Hong Chien, Hung-Hua Lee, Chia-Chun Hao, Yu-Chuan Yu, Ing-Song Hsu, Cheng-Che Cheng, I-Chun Chen, Jian-Zhang |
author_facet | Kuok, Fei-Hong Chien, Hung-Hua Lee, Chia-Chun Hao, Yu-Chuan Yu, Ing-Song Hsu, Cheng-Che Cheng, I-Chun Chen, Jian-Zhang |
author_sort | Kuok, Fei-Hong |
collection | PubMed |
description | This study evaluates DC-pulse nitrogen atmospheric-pressure-plasma-jet processed carbon nanotube (CNT)–reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitor applications. X-ray photoelectron spectroscopy (XPS) indicates decreased oxygen content (mainly, C–O bonding content) after nitrogen APPJ processing owing to the oxidation and vaporization of ethyl cellulose. Nitrogen APPJ processing introduces nitrogen doping and improves the hydrophilicity of the CNT–rGO nanocomposites. Raman analysis indicates that nitrogen APPJ processing introduces defects and/or surface functional groups on the nanocomposites. The processed CNT–rGO nanocomposites on carbon cloth are applied to the electrodes of H(2)SO(4)–polyvinyl alcohol (PVA) gel-electrolyte supercapacitors. The best achieved specific (areal) capacitance is 93.1 F g(−1) (9.1 mF cm(−2)) with 15 s APPJ-processed CNT–rGO nanocomposite electrodes, as evaluated by cyclic voltammetry under a potential scan rate of 2 mV s(−1). The addition of rGOs in CNTs in the nanoporous electrodes improves the supercapacitor performance. |
format | Online Article Text |
id | pubmed-9077538 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90775382022-05-09 Atmospheric-pressure-plasma-jet processed carbon nanotube (CNT)–reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitors Kuok, Fei-Hong Chien, Hung-Hua Lee, Chia-Chun Hao, Yu-Chuan Yu, Ing-Song Hsu, Cheng-Che Cheng, I-Chun Chen, Jian-Zhang RSC Adv Chemistry This study evaluates DC-pulse nitrogen atmospheric-pressure-plasma-jet processed carbon nanotube (CNT)–reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitor applications. X-ray photoelectron spectroscopy (XPS) indicates decreased oxygen content (mainly, C–O bonding content) after nitrogen APPJ processing owing to the oxidation and vaporization of ethyl cellulose. Nitrogen APPJ processing introduces nitrogen doping and improves the hydrophilicity of the CNT–rGO nanocomposites. Raman analysis indicates that nitrogen APPJ processing introduces defects and/or surface functional groups on the nanocomposites. The processed CNT–rGO nanocomposites on carbon cloth are applied to the electrodes of H(2)SO(4)–polyvinyl alcohol (PVA) gel-electrolyte supercapacitors. The best achieved specific (areal) capacitance is 93.1 F g(−1) (9.1 mF cm(−2)) with 15 s APPJ-processed CNT–rGO nanocomposite electrodes, as evaluated by cyclic voltammetry under a potential scan rate of 2 mV s(−1). The addition of rGOs in CNTs in the nanoporous electrodes improves the supercapacitor performance. The Royal Society of Chemistry 2018-01-12 /pmc/articles/PMC9077538/ /pubmed/35541196 http://dx.doi.org/10.1039/c7ra12108c Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Kuok, Fei-Hong Chien, Hung-Hua Lee, Chia-Chun Hao, Yu-Chuan Yu, Ing-Song Hsu, Cheng-Che Cheng, I-Chun Chen, Jian-Zhang Atmospheric-pressure-plasma-jet processed carbon nanotube (CNT)–reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitors |
title | Atmospheric-pressure-plasma-jet processed carbon nanotube (CNT)–reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitors |
title_full | Atmospheric-pressure-plasma-jet processed carbon nanotube (CNT)–reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitors |
title_fullStr | Atmospheric-pressure-plasma-jet processed carbon nanotube (CNT)–reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitors |
title_full_unstemmed | Atmospheric-pressure-plasma-jet processed carbon nanotube (CNT)–reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitors |
title_short | Atmospheric-pressure-plasma-jet processed carbon nanotube (CNT)–reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitors |
title_sort | atmospheric-pressure-plasma-jet processed carbon nanotube (cnt)–reduced graphene oxide (rgo) nanocomposites for gel-electrolyte supercapacitors |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9077538/ https://www.ncbi.nlm.nih.gov/pubmed/35541196 http://dx.doi.org/10.1039/c7ra12108c |
work_keys_str_mv | AT kuokfeihong atmosphericpressureplasmajetprocessedcarbonnanotubecntreducedgrapheneoxidergonanocompositesforgelelectrolytesupercapacitors AT chienhunghua atmosphericpressureplasmajetprocessedcarbonnanotubecntreducedgrapheneoxidergonanocompositesforgelelectrolytesupercapacitors AT leechiachun atmosphericpressureplasmajetprocessedcarbonnanotubecntreducedgrapheneoxidergonanocompositesforgelelectrolytesupercapacitors AT haoyuchuan atmosphericpressureplasmajetprocessedcarbonnanotubecntreducedgrapheneoxidergonanocompositesforgelelectrolytesupercapacitors AT yuingsong atmosphericpressureplasmajetprocessedcarbonnanotubecntreducedgrapheneoxidergonanocompositesforgelelectrolytesupercapacitors AT hsuchengche atmosphericpressureplasmajetprocessedcarbonnanotubecntreducedgrapheneoxidergonanocompositesforgelelectrolytesupercapacitors AT chengichun atmosphericpressureplasmajetprocessedcarbonnanotubecntreducedgrapheneoxidergonanocompositesforgelelectrolytesupercapacitors AT chenjianzhang atmosphericpressureplasmajetprocessedcarbonnanotubecntreducedgrapheneoxidergonanocompositesforgelelectrolytesupercapacitors |