Cargando…
Multi-Source Selection Transfer Learning with Privacy-Preserving
Transfer learning has ability to create learning task of weakly labeled or unlabeled target domain by using knowledge of source domain to help, which can effectively improve the performance of target learning task. At present, the increased awareness of privacy protection restricts access to data so...
Autor principal: | Wu, Weifei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9077647/ https://www.ncbi.nlm.nih.gov/pubmed/35573261 http://dx.doi.org/10.1007/s11063-022-10841-6 |
Ejemplares similares
-
Multi-source fast transfer learning algorithm based on support vector machine
por: Gao, Peng, et al.
Publicado: (2021) -
Multi-Source Deep Transfer Neural Network Algorithm
por: Li, Jingmei, et al.
Publicado: (2019) -
Preserving Source Location Privacy for Energy Harvesting WSNs
por: Huang, Changqin, et al.
Publicado: (2017) -
Differential privacy preserved federated transfer learning for multi-institutional (68)Ga-PET image artefact detection and disentanglement
por: Shiri, Isaac, et al.
Publicado: (2023) -
Privacy Preserving Image Encryption with Optimal Deep Transfer Learning Based Accident Severity Classification Model
por: Sirisha, Uddagiri, et al.
Publicado: (2023)