Cargando…
Predictive ability of current machine learning algorithms for type 2 diabetes mellitus: A meta‐analysis
AIMS/INTRODUCTION: Recently, an increasing number of cohort studies have suggested using machine learning (ML) to predict type 2 diabetes mellitus. However, its predictive ability remains inconclusive. This meta‐analysis evaluated the current ability of ML algorithms for predicting incident type 2 d...
Autores principales: | Kodama, Satoru, Fujihara, Kazuya, Horikawa, Chika, Kitazawa, Masaru, Iwanaga, Midori, Kato, Kiminori, Watanabe, Kenichi, Nakagawa, Yoshimi, Matsuzaka, Takashi, Shimano, Hitoshi, Sone, Hirohito |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9077721/ https://www.ncbi.nlm.nih.gov/pubmed/34942059 http://dx.doi.org/10.1111/jdi.13736 |
Ejemplares similares
-
Diabetes mellitus and risk of new‐onset and recurrent heart failure: a systematic review and meta‐analysis
por: Kodama, Satoru, et al.
Publicado: (2020) -
Ability of Current Machine Learning Algorithms to Predict and Detect Hypoglycemia in Patients With Diabetes Mellitus: Meta-analysis
por: Kodama, Satoru, et al.
Publicado: (2021) -
Unstable bodyweight and incident type 2 diabetes mellitus: A meta‐analysis
por: Kodama, Satoru, et al.
Publicado: (2017) -
Quantitative Relationship Between Cumulative Risk Alleles Based on Genome-Wide Association Studies and Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis
por: Kodama, Satoru, et al.
Publicado: (2018) -
Carrot Consumption Frequency Associated with Reduced BMI and Obesity through the SNP Intermediary rs4445711
por: Fujihara, Kazuya, et al.
Publicado: (2021)