Cargando…
A novel method of three-dimensional hetero-spectral correlation analysis for the fingerprint identification of humic acid functional groups for hexavalent chromium retention
Two-dimensional hetero-spectral correlation analysis has been widely used for the interpretation of spectral changes of humic substances involved in various environmental processes. However, when three different types of spectroscopies are utilised, only a pairwise correlation can be achieved. In or...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9077723/ https://www.ncbi.nlm.nih.gov/pubmed/35542912 http://dx.doi.org/10.1039/c7ra12146f |
_version_ | 1784702173272080384 |
---|---|
author | Zhang, Jia Yin, Huilin Samuel, Barnie Liu, Fei Chen, Honghan |
author_facet | Zhang, Jia Yin, Huilin Samuel, Barnie Liu, Fei Chen, Honghan |
author_sort | Zhang, Jia |
collection | PubMed |
description | Two-dimensional hetero-spectral correlation analysis has been widely used for the interpretation of spectral changes of humic substances involved in various environmental processes. However, when three different types of spectroscopies are utilised, only a pairwise correlation can be achieved. In order to overcome this problem, a novel method of three-dimensional hetero-spectral correlation analysis with scaling technique was developed in this study, which can further establish a direct correlation between three different types of spectroscopies, including FTIR, (13)C CP/MAS NMR, and XPS. The proposed method was applied to the fingerprint identification of undissolved humic acid functional groups for Cr(vi) retention, which is one of the most important points for understanding the migration and transformation of Cr(vi) in a subsurface environment. The results indicated that mainly free and dissociated carboxylic groups, phenolic groups, and polysaccharide participated in the reaction with Cr(vi), and these functional groups were mainly located at aromatic domains. Besides, the variations of functional groups were related to the reduction of Cr(vi), and the reduced Cr(iii) mainly bound to aromatic domains. The successful application of the proposed method demonstrated that it can serve as a promising tool for further investigations concerning more complicated environmental processes and even other scientific fields by supplying more detailed, reliable and visualised spectral information. |
format | Online Article Text |
id | pubmed-9077723 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90777232022-05-09 A novel method of three-dimensional hetero-spectral correlation analysis for the fingerprint identification of humic acid functional groups for hexavalent chromium retention Zhang, Jia Yin, Huilin Samuel, Barnie Liu, Fei Chen, Honghan RSC Adv Chemistry Two-dimensional hetero-spectral correlation analysis has been widely used for the interpretation of spectral changes of humic substances involved in various environmental processes. However, when three different types of spectroscopies are utilised, only a pairwise correlation can be achieved. In order to overcome this problem, a novel method of three-dimensional hetero-spectral correlation analysis with scaling technique was developed in this study, which can further establish a direct correlation between three different types of spectroscopies, including FTIR, (13)C CP/MAS NMR, and XPS. The proposed method was applied to the fingerprint identification of undissolved humic acid functional groups for Cr(vi) retention, which is one of the most important points for understanding the migration and transformation of Cr(vi) in a subsurface environment. The results indicated that mainly free and dissociated carboxylic groups, phenolic groups, and polysaccharide participated in the reaction with Cr(vi), and these functional groups were mainly located at aromatic domains. Besides, the variations of functional groups were related to the reduction of Cr(vi), and the reduced Cr(iii) mainly bound to aromatic domains. The successful application of the proposed method demonstrated that it can serve as a promising tool for further investigations concerning more complicated environmental processes and even other scientific fields by supplying more detailed, reliable and visualised spectral information. The Royal Society of Chemistry 2018-01-19 /pmc/articles/PMC9077723/ /pubmed/35542912 http://dx.doi.org/10.1039/c7ra12146f Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Zhang, Jia Yin, Huilin Samuel, Barnie Liu, Fei Chen, Honghan A novel method of three-dimensional hetero-spectral correlation analysis for the fingerprint identification of humic acid functional groups for hexavalent chromium retention |
title | A novel method of three-dimensional hetero-spectral correlation analysis for the fingerprint identification of humic acid functional groups for hexavalent chromium retention |
title_full | A novel method of three-dimensional hetero-spectral correlation analysis for the fingerprint identification of humic acid functional groups for hexavalent chromium retention |
title_fullStr | A novel method of three-dimensional hetero-spectral correlation analysis for the fingerprint identification of humic acid functional groups for hexavalent chromium retention |
title_full_unstemmed | A novel method of three-dimensional hetero-spectral correlation analysis for the fingerprint identification of humic acid functional groups for hexavalent chromium retention |
title_short | A novel method of three-dimensional hetero-spectral correlation analysis for the fingerprint identification of humic acid functional groups for hexavalent chromium retention |
title_sort | novel method of three-dimensional hetero-spectral correlation analysis for the fingerprint identification of humic acid functional groups for hexavalent chromium retention |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9077723/ https://www.ncbi.nlm.nih.gov/pubmed/35542912 http://dx.doi.org/10.1039/c7ra12146f |
work_keys_str_mv | AT zhangjia anovelmethodofthreedimensionalheterospectralcorrelationanalysisforthefingerprintidentificationofhumicacidfunctionalgroupsforhexavalentchromiumretention AT yinhuilin anovelmethodofthreedimensionalheterospectralcorrelationanalysisforthefingerprintidentificationofhumicacidfunctionalgroupsforhexavalentchromiumretention AT samuelbarnie anovelmethodofthreedimensionalheterospectralcorrelationanalysisforthefingerprintidentificationofhumicacidfunctionalgroupsforhexavalentchromiumretention AT liufei anovelmethodofthreedimensionalheterospectralcorrelationanalysisforthefingerprintidentificationofhumicacidfunctionalgroupsforhexavalentchromiumretention AT chenhonghan anovelmethodofthreedimensionalheterospectralcorrelationanalysisforthefingerprintidentificationofhumicacidfunctionalgroupsforhexavalentchromiumretention AT zhangjia novelmethodofthreedimensionalheterospectralcorrelationanalysisforthefingerprintidentificationofhumicacidfunctionalgroupsforhexavalentchromiumretention AT yinhuilin novelmethodofthreedimensionalheterospectralcorrelationanalysisforthefingerprintidentificationofhumicacidfunctionalgroupsforhexavalentchromiumretention AT samuelbarnie novelmethodofthreedimensionalheterospectralcorrelationanalysisforthefingerprintidentificationofhumicacidfunctionalgroupsforhexavalentchromiumretention AT liufei novelmethodofthreedimensionalheterospectralcorrelationanalysisforthefingerprintidentificationofhumicacidfunctionalgroupsforhexavalentchromiumretention AT chenhonghan novelmethodofthreedimensionalheterospectralcorrelationanalysisforthefingerprintidentificationofhumicacidfunctionalgroupsforhexavalentchromiumretention |