Cargando…
Mechanical synthesis of chemically bonded phosphorus–graphene hybrid as high-temperature lubricating oil additive
Red phosphorus (P) was covalently attached to graphene nanosheets (Gr) using high-energy ball-milling under a nitrogen atmosphere. Benefiting from the formation of phosphate and P–O–C bonds on graphene surfaces, the resulting phosphorus–graphene (P–Gr) hybrids exhibited excellent dispersion stabilit...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9077827/ https://www.ncbi.nlm.nih.gov/pubmed/35539532 http://dx.doi.org/10.1039/c7ra11691h |
_version_ | 1784702196805271552 |
---|---|
author | Wu, Xinhu Gong, Kuiliang Zhao, Gaiqing Lou, Wenjing Wang, Xiaobo Liu, Weimin |
author_facet | Wu, Xinhu Gong, Kuiliang Zhao, Gaiqing Lou, Wenjing Wang, Xiaobo Liu, Weimin |
author_sort | Wu, Xinhu |
collection | PubMed |
description | Red phosphorus (P) was covalently attached to graphene nanosheets (Gr) using high-energy ball-milling under a nitrogen atmosphere. Benefiting from the formation of phosphate and P–O–C bonds on graphene surfaces, the resulting phosphorus–graphene (P–Gr) hybrids exhibited excellent dispersion stability in polyalkylene glycol (PAG) base oil compared with graphene. Moreover, tribological measurement indicated that addition of 1.0 wt% P–Gr into PAG resulted in significant reduction in friction coefficient (up to about 12%) and wear volume (up to about 98%) for steel/steel contact at 100 °C, which was likely due to the formation of a boundary lubrication film on the sliding surfaces during the friction and wear processes. XPS analysis demonstrated that the tribofilm is composed of FeO, Fe(3)O(4), FeOOH, FePO(4), and the compounds containing C–O–C and P–O bonds. |
format | Online Article Text |
id | pubmed-9077827 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90778272022-05-09 Mechanical synthesis of chemically bonded phosphorus–graphene hybrid as high-temperature lubricating oil additive Wu, Xinhu Gong, Kuiliang Zhao, Gaiqing Lou, Wenjing Wang, Xiaobo Liu, Weimin RSC Adv Chemistry Red phosphorus (P) was covalently attached to graphene nanosheets (Gr) using high-energy ball-milling under a nitrogen atmosphere. Benefiting from the formation of phosphate and P–O–C bonds on graphene surfaces, the resulting phosphorus–graphene (P–Gr) hybrids exhibited excellent dispersion stability in polyalkylene glycol (PAG) base oil compared with graphene. Moreover, tribological measurement indicated that addition of 1.0 wt% P–Gr into PAG resulted in significant reduction in friction coefficient (up to about 12%) and wear volume (up to about 98%) for steel/steel contact at 100 °C, which was likely due to the formation of a boundary lubrication film on the sliding surfaces during the friction and wear processes. XPS analysis demonstrated that the tribofilm is composed of FeO, Fe(3)O(4), FeOOH, FePO(4), and the compounds containing C–O–C and P–O bonds. The Royal Society of Chemistry 2018-01-25 /pmc/articles/PMC9077827/ /pubmed/35539532 http://dx.doi.org/10.1039/c7ra11691h Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Wu, Xinhu Gong, Kuiliang Zhao, Gaiqing Lou, Wenjing Wang, Xiaobo Liu, Weimin Mechanical synthesis of chemically bonded phosphorus–graphene hybrid as high-temperature lubricating oil additive |
title | Mechanical synthesis of chemically bonded phosphorus–graphene hybrid as high-temperature lubricating oil additive |
title_full | Mechanical synthesis of chemically bonded phosphorus–graphene hybrid as high-temperature lubricating oil additive |
title_fullStr | Mechanical synthesis of chemically bonded phosphorus–graphene hybrid as high-temperature lubricating oil additive |
title_full_unstemmed | Mechanical synthesis of chemically bonded phosphorus–graphene hybrid as high-temperature lubricating oil additive |
title_short | Mechanical synthesis of chemically bonded phosphorus–graphene hybrid as high-temperature lubricating oil additive |
title_sort | mechanical synthesis of chemically bonded phosphorus–graphene hybrid as high-temperature lubricating oil additive |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9077827/ https://www.ncbi.nlm.nih.gov/pubmed/35539532 http://dx.doi.org/10.1039/c7ra11691h |
work_keys_str_mv | AT wuxinhu mechanicalsynthesisofchemicallybondedphosphorusgraphenehybridashightemperaturelubricatingoiladditive AT gongkuiliang mechanicalsynthesisofchemicallybondedphosphorusgraphenehybridashightemperaturelubricatingoiladditive AT zhaogaiqing mechanicalsynthesisofchemicallybondedphosphorusgraphenehybridashightemperaturelubricatingoiladditive AT louwenjing mechanicalsynthesisofchemicallybondedphosphorusgraphenehybridashightemperaturelubricatingoiladditive AT wangxiaobo mechanicalsynthesisofchemicallybondedphosphorusgraphenehybridashightemperaturelubricatingoiladditive AT liuweimin mechanicalsynthesisofchemicallybondedphosphorusgraphenehybridashightemperaturelubricatingoiladditive |