Cargando…

Application of gas flow headspace liquid phase micro extraction coupled with gas chromatography-mass spectrometry for determination of 4-methylimidazole in food samples employing experimental design optimization

BACKGROUND: 4-Methylimidazole (4-MeI) or 4-methyl-1H-imidazole, a slightly yellowish solid with molecular formula C(4)H(6)N(2), is a heterocyclic compound which supposedly does not exist as a natural product and is formed when carbohydrates are heating with ammonium compounds. This compound is used...

Descripción completa

Detalles Bibliográficos
Autores principales: Rafiei jam, Mahdiye, Nezhadali, Azizollah, Kaykhaii, Massoud
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9077832/
https://www.ncbi.nlm.nih.gov/pubmed/35524272
http://dx.doi.org/10.1186/s13065-022-00823-z
Descripción
Sumario:BACKGROUND: 4-Methylimidazole (4-MeI) or 4-methyl-1H-imidazole, a slightly yellowish solid with molecular formula C(4)H(6)N(2), is a heterocyclic compound which supposedly does not exist as a natural product and is formed when carbohydrates are heating with ammonium compounds. This compound is used in pharmaceuticals, agriculture and photography chemicals, dyes and pigments, and rubber manufacturing. In the present study, a simple and efficient sample preparation method designated gas flow headspace liquid phase microextraction (GF-HS-SDME) was employed for the extraction and preconcentration of 4-methylimidazole (4-MeI) from food and beverage samples, before its determination by gas chromatography-mass spectrometry. RESULT: To investigate the optimal conditions for the extraction process in GF-HS-SDME method, factors affecting extraction, including selection of extraction solvent, vial volume, extraction solvent ratio, position of extracting solvent, drop volume, sample volume, stirring speed, temperature, extraction time, sample pH, ionic strength of the sample solution and gas flow rate were optimized by utilizing both one-variable-at-a-time method and Plackett–Burman design. The investigation of protocol was carried out by using a standard solution containing 100.0 μg L(−1) of 4-MeI in deionized water. CONCLUSION: In this study, a simple and green analytical method based on GF-HS-SDME was proposed for the extraction and preconcentration of 4-MeI from foodstuffs, followed by GC–MS determination. The main advantage of this method is its high preconcentration factor and fastness due to the application of an inert gas stream during microextraction. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13065-022-00823-z.