Cargando…
Optimized Cas9:sgRNA delivery efficiently generates biallelic MSTN knockout sheep without affecting meat quality
BACKGROUND: CRISPR/Cas9-based genome-editing systems have been used to efficiently engineer livestock species with precise genetic alterations intended for biomedical and agricultural applications. Previously, we have successfully generated gene-edited sheep and goats via one-cell-stage embryonic mi...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9078021/ https://www.ncbi.nlm.nih.gov/pubmed/35524183 http://dx.doi.org/10.1186/s12864-022-08594-6 |
_version_ | 1784702238538596352 |
---|---|
author | Zhou, Shiwei Kalds, Peter Luo, Qi Sun, Kexin Zhao, Xiaoe Gao, Yawei Cai, Bei Huang, Shuhong Kou, Qifang Petersen, Bjoern Chen, Yulin Ma, Baohua Wang, Xiaolong |
author_facet | Zhou, Shiwei Kalds, Peter Luo, Qi Sun, Kexin Zhao, Xiaoe Gao, Yawei Cai, Bei Huang, Shuhong Kou, Qifang Petersen, Bjoern Chen, Yulin Ma, Baohua Wang, Xiaolong |
author_sort | Zhou, Shiwei |
collection | PubMed |
description | BACKGROUND: CRISPR/Cas9-based genome-editing systems have been used to efficiently engineer livestock species with precise genetic alterations intended for biomedical and agricultural applications. Previously, we have successfully generated gene-edited sheep and goats via one-cell-stage embryonic microinjection of a Cas9 mRNA and single-guide RNAs (sgRNAs) mixture. However, most gene-edited animals produced using this approach were heterozygotes. Additionally, non-homozygous gene-editing outcomes may not fully generate the desired phenotype in an efficient manner. RESULTS: We report the optimization of a Cas9 mRNA-sgRNA delivery system to efficiently generate homozygous myostatin (MSTN) knockout sheep for improved growth and meat production. Firstly, an sgRNA selection software (sgRNAcas9) was used to preliminarily screen for highly efficient sgRNAs. Ten sgRNAs targeting the MSTN gene were selected and validated in vitro using sheep fibroblast cells. Four out of ten sgRNAs (two in exon 1 and two in exon 2) showed a targeting efficiency > 50%. To determine the optimal CRISPR/Cas9 microinjection concentration, four levels of Cas9 mRNA and three levels of sgRNAs in mixtures were injected into sheep embryos. Microinjection of 100 ng/μL Cas9 mRNA and 200 ng/μL sgRNAs resulted in the most improved targeting efficiency. Additionally, using both the highly efficient sgRNAs and the optimal microinjection concentration, MSTN-knockout sheep were generated with approximately 50% targeting efficiency, reaching a homozygous knockout efficiency of 25%. Growth rate and meat quality of MSTN-edited lambs were also investigated. MSTN-knockout lambs exhibited increased body weight and average daily gain. Moreover, pH, drip loss, intramuscular fat, crude protein, and shear force of gluteal muscles of MSTN-knockout lambs did not show changes compared to the wild-type lambs. CONCLUSIONS: This study highlights the importance of in vitro evaluation for the optimization of sgRNAs and microinjection dosage of gene editing reagents. This approach enabled efficient engineering of homozygous knockout sheep. Additionally, this study confirms that MSTN-knockout lambs does not negatively impact meat quality, thus supporting the adoption of gene editing as tool to improve productivity of farm animals. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-022-08594-6. |
format | Online Article Text |
id | pubmed-9078021 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-90780212022-05-08 Optimized Cas9:sgRNA delivery efficiently generates biallelic MSTN knockout sheep without affecting meat quality Zhou, Shiwei Kalds, Peter Luo, Qi Sun, Kexin Zhao, Xiaoe Gao, Yawei Cai, Bei Huang, Shuhong Kou, Qifang Petersen, Bjoern Chen, Yulin Ma, Baohua Wang, Xiaolong BMC Genomics Research BACKGROUND: CRISPR/Cas9-based genome-editing systems have been used to efficiently engineer livestock species with precise genetic alterations intended for biomedical and agricultural applications. Previously, we have successfully generated gene-edited sheep and goats via one-cell-stage embryonic microinjection of a Cas9 mRNA and single-guide RNAs (sgRNAs) mixture. However, most gene-edited animals produced using this approach were heterozygotes. Additionally, non-homozygous gene-editing outcomes may not fully generate the desired phenotype in an efficient manner. RESULTS: We report the optimization of a Cas9 mRNA-sgRNA delivery system to efficiently generate homozygous myostatin (MSTN) knockout sheep for improved growth and meat production. Firstly, an sgRNA selection software (sgRNAcas9) was used to preliminarily screen for highly efficient sgRNAs. Ten sgRNAs targeting the MSTN gene were selected and validated in vitro using sheep fibroblast cells. Four out of ten sgRNAs (two in exon 1 and two in exon 2) showed a targeting efficiency > 50%. To determine the optimal CRISPR/Cas9 microinjection concentration, four levels of Cas9 mRNA and three levels of sgRNAs in mixtures were injected into sheep embryos. Microinjection of 100 ng/μL Cas9 mRNA and 200 ng/μL sgRNAs resulted in the most improved targeting efficiency. Additionally, using both the highly efficient sgRNAs and the optimal microinjection concentration, MSTN-knockout sheep were generated with approximately 50% targeting efficiency, reaching a homozygous knockout efficiency of 25%. Growth rate and meat quality of MSTN-edited lambs were also investigated. MSTN-knockout lambs exhibited increased body weight and average daily gain. Moreover, pH, drip loss, intramuscular fat, crude protein, and shear force of gluteal muscles of MSTN-knockout lambs did not show changes compared to the wild-type lambs. CONCLUSIONS: This study highlights the importance of in vitro evaluation for the optimization of sgRNAs and microinjection dosage of gene editing reagents. This approach enabled efficient engineering of homozygous knockout sheep. Additionally, this study confirms that MSTN-knockout lambs does not negatively impact meat quality, thus supporting the adoption of gene editing as tool to improve productivity of farm animals. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-022-08594-6. BioMed Central 2022-05-06 /pmc/articles/PMC9078021/ /pubmed/35524183 http://dx.doi.org/10.1186/s12864-022-08594-6 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Zhou, Shiwei Kalds, Peter Luo, Qi Sun, Kexin Zhao, Xiaoe Gao, Yawei Cai, Bei Huang, Shuhong Kou, Qifang Petersen, Bjoern Chen, Yulin Ma, Baohua Wang, Xiaolong Optimized Cas9:sgRNA delivery efficiently generates biallelic MSTN knockout sheep without affecting meat quality |
title | Optimized Cas9:sgRNA delivery efficiently generates biallelic MSTN knockout sheep without affecting meat quality |
title_full | Optimized Cas9:sgRNA delivery efficiently generates biallelic MSTN knockout sheep without affecting meat quality |
title_fullStr | Optimized Cas9:sgRNA delivery efficiently generates biallelic MSTN knockout sheep without affecting meat quality |
title_full_unstemmed | Optimized Cas9:sgRNA delivery efficiently generates biallelic MSTN knockout sheep without affecting meat quality |
title_short | Optimized Cas9:sgRNA delivery efficiently generates biallelic MSTN knockout sheep without affecting meat quality |
title_sort | optimized cas9:sgrna delivery efficiently generates biallelic mstn knockout sheep without affecting meat quality |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9078021/ https://www.ncbi.nlm.nih.gov/pubmed/35524183 http://dx.doi.org/10.1186/s12864-022-08594-6 |
work_keys_str_mv | AT zhoushiwei optimizedcas9sgrnadeliveryefficientlygeneratesbiallelicmstnknockoutsheepwithoutaffectingmeatquality AT kaldspeter optimizedcas9sgrnadeliveryefficientlygeneratesbiallelicmstnknockoutsheepwithoutaffectingmeatquality AT luoqi optimizedcas9sgrnadeliveryefficientlygeneratesbiallelicmstnknockoutsheepwithoutaffectingmeatquality AT sunkexin optimizedcas9sgrnadeliveryefficientlygeneratesbiallelicmstnknockoutsheepwithoutaffectingmeatquality AT zhaoxiaoe optimizedcas9sgrnadeliveryefficientlygeneratesbiallelicmstnknockoutsheepwithoutaffectingmeatquality AT gaoyawei optimizedcas9sgrnadeliveryefficientlygeneratesbiallelicmstnknockoutsheepwithoutaffectingmeatquality AT caibei optimizedcas9sgrnadeliveryefficientlygeneratesbiallelicmstnknockoutsheepwithoutaffectingmeatquality AT huangshuhong optimizedcas9sgrnadeliveryefficientlygeneratesbiallelicmstnknockoutsheepwithoutaffectingmeatquality AT kouqifang optimizedcas9sgrnadeliveryefficientlygeneratesbiallelicmstnknockoutsheepwithoutaffectingmeatquality AT petersenbjoern optimizedcas9sgrnadeliveryefficientlygeneratesbiallelicmstnknockoutsheepwithoutaffectingmeatquality AT chenyulin optimizedcas9sgrnadeliveryefficientlygeneratesbiallelicmstnknockoutsheepwithoutaffectingmeatquality AT mabaohua optimizedcas9sgrnadeliveryefficientlygeneratesbiallelicmstnknockoutsheepwithoutaffectingmeatquality AT wangxiaolong optimizedcas9sgrnadeliveryefficientlygeneratesbiallelicmstnknockoutsheepwithoutaffectingmeatquality |