Cargando…
Performance enhancement of a polydimethylsiloxane membrane for effective n-butanol pervaporation by bonding multi-silyl-functional MCM-41
In the current work, MCM-41/polydimethylsiloxane (PDMS) mixed matrix membrane (MMM) was prepared for effective n-butanol pervaporation from a model aqueous solution. In order to improve the compatibility between MCM-41 and PDMS, different types of silane coupling agents including n-propyltrimethoxys...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9078129/ https://www.ncbi.nlm.nih.gov/pubmed/35542416 http://dx.doi.org/10.1039/c7ra11043j |
Sumario: | In the current work, MCM-41/polydimethylsiloxane (PDMS) mixed matrix membrane (MMM) was prepared for effective n-butanol pervaporation from a model aqueous solution. In order to improve the compatibility between MCM-41 and PDMS, different types of silane coupling agents including n-propyltrimethoxysilane (PTMS), n-octyltrimethoxysilane (OTMS), n-dodecyltrimethoxysilane (DTMS) and n-hexadecyltrimethoxysilane (HDTMS) were used to modify the MCM-41. The results showed that the highest n-butanol separation performance was achieved by bonding 20 wt% of PTMS-modified MCM-41 with PDMS. Under these conditions, total flux of 1476 g m(−2) h(−1) was obtained when separating a 1.5 wt% n-butanol aqueous solution at 55 °C. The total flux increased by nearly 40% compared to the pure PDMS membrane with no obvious changes of the n-butanol separation factor at the same time. The curing process of the casting solution was also significantly improved after MCM-41 modification. |
---|