Cargando…
Synthesis of novel cyclosiloxane monomers containing push–pull moieties and their anionic ring opening polymerization
The synthesis of three novel tetracyclosiloxane monomers modified either with a nitroaniline (NA) or with a Disperse Red 1 (DR1) push–pull group and their ring opening polymerization reaction in the presence of tetramethylammonium hydroxide are presented. The prepared monomers and polymers were char...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9078476/ https://www.ncbi.nlm.nih.gov/pubmed/35539152 http://dx.doi.org/10.1039/c8ra00707a |
_version_ | 1784702340877516800 |
---|---|
author | Perju, Elena Cuervo-Reyes, Eduardo Shova, Sergiu Opris, Dorina M. |
author_facet | Perju, Elena Cuervo-Reyes, Eduardo Shova, Sergiu Opris, Dorina M. |
author_sort | Perju, Elena |
collection | PubMed |
description | The synthesis of three novel tetracyclosiloxane monomers modified either with a nitroaniline (NA) or with a Disperse Red 1 (DR1) push–pull group and their ring opening polymerization reaction in the presence of tetramethylammonium hydroxide are presented. The prepared monomers and polymers were characterized by different spectral methods and gel permeation chromatography. For the crystalline monomers, the structures were further proven by single crystal X-ray diffraction. Dynamic scanning calorimetry shows that the polymers that carry NA groups have a glass transition temperature (T(g)) well below room temperature (RT), while the one that carries DR1 groups melts at 55 °C. The transition temperatures have a strong effect on permittivity as indicated by broadband impedance spectroscopy measurements conducted at different temperatures and frequencies. The polymers modified with NA groups have a high permittivity (maximum value of 17.3) at RT, suggesting the polar groups to be mobile and orientation polarization to be effective. However, the polar groups of the polymer modified with DR1 are frozen and thus cannot contribute to the permittivity via orientation polarization. Consequently, the permittivity is only 8.8 at RT, but increases to 22 above the melting temperature, where the dipoles are mobile. Because of the high dielectric permittivity and rather low T(g), the polymers modified with NA are attractive as active dielectric materials in actuators, capacitors, and stretchable electronics, whereas the polymer modified with DR1 may be of interest in nonlinear optical devices. |
format | Online Article Text |
id | pubmed-9078476 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90784762022-05-09 Synthesis of novel cyclosiloxane monomers containing push–pull moieties and their anionic ring opening polymerization Perju, Elena Cuervo-Reyes, Eduardo Shova, Sergiu Opris, Dorina M. RSC Adv Chemistry The synthesis of three novel tetracyclosiloxane monomers modified either with a nitroaniline (NA) or with a Disperse Red 1 (DR1) push–pull group and their ring opening polymerization reaction in the presence of tetramethylammonium hydroxide are presented. The prepared monomers and polymers were characterized by different spectral methods and gel permeation chromatography. For the crystalline monomers, the structures were further proven by single crystal X-ray diffraction. Dynamic scanning calorimetry shows that the polymers that carry NA groups have a glass transition temperature (T(g)) well below room temperature (RT), while the one that carries DR1 groups melts at 55 °C. The transition temperatures have a strong effect on permittivity as indicated by broadband impedance spectroscopy measurements conducted at different temperatures and frequencies. The polymers modified with NA groups have a high permittivity (maximum value of 17.3) at RT, suggesting the polar groups to be mobile and orientation polarization to be effective. However, the polar groups of the polymer modified with DR1 are frozen and thus cannot contribute to the permittivity via orientation polarization. Consequently, the permittivity is only 8.8 at RT, but increases to 22 above the melting temperature, where the dipoles are mobile. Because of the high dielectric permittivity and rather low T(g), the polymers modified with NA are attractive as active dielectric materials in actuators, capacitors, and stretchable electronics, whereas the polymer modified with DR1 may be of interest in nonlinear optical devices. The Royal Society of Chemistry 2018-02-16 /pmc/articles/PMC9078476/ /pubmed/35539152 http://dx.doi.org/10.1039/c8ra00707a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Perju, Elena Cuervo-Reyes, Eduardo Shova, Sergiu Opris, Dorina M. Synthesis of novel cyclosiloxane monomers containing push–pull moieties and their anionic ring opening polymerization |
title | Synthesis of novel cyclosiloxane monomers containing push–pull moieties and their anionic ring opening polymerization |
title_full | Synthesis of novel cyclosiloxane monomers containing push–pull moieties and their anionic ring opening polymerization |
title_fullStr | Synthesis of novel cyclosiloxane monomers containing push–pull moieties and their anionic ring opening polymerization |
title_full_unstemmed | Synthesis of novel cyclosiloxane monomers containing push–pull moieties and their anionic ring opening polymerization |
title_short | Synthesis of novel cyclosiloxane monomers containing push–pull moieties and their anionic ring opening polymerization |
title_sort | synthesis of novel cyclosiloxane monomers containing push–pull moieties and their anionic ring opening polymerization |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9078476/ https://www.ncbi.nlm.nih.gov/pubmed/35539152 http://dx.doi.org/10.1039/c8ra00707a |
work_keys_str_mv | AT perjuelena synthesisofnovelcyclosiloxanemonomerscontainingpushpullmoietiesandtheiranionicringopeningpolymerization AT cuervoreyeseduardo synthesisofnovelcyclosiloxanemonomerscontainingpushpullmoietiesandtheiranionicringopeningpolymerization AT shovasergiu synthesisofnovelcyclosiloxanemonomerscontainingpushpullmoietiesandtheiranionicringopeningpolymerization AT oprisdorinam synthesisofnovelcyclosiloxanemonomerscontainingpushpullmoietiesandtheiranionicringopeningpolymerization |